

REPORT ON SUMMARY OF SUBSURFACE EXPLORATIONS, GEOTECHNICAL DESIGN RECOMMENDATIONS AND CONSTRUCTION CONSIDERATIONS 2 HARBOR STREET / 329 NORTHERN AVENUE BOSTON, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for BCP-CG Harbor Property LLC Boston, Massachusetts

File No. 0200427-000 May 2021

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

17 May 2021 File No. 0200427-000

BCP-CHG Harbor Property LLC 200 State Street, 5th Floor Boston, Massachusetts 02109

Attention: Mr. Eric Ewer

 Subject: Summary of Subsurface Explorations, Geotechnical Design Recommendations and Construction Considerations
 2 Harbor Street / 329 Northern Avenue Boston, Massachusetts

Ladies and Gentlemen:

This report summarizes the subsurface explorations undertaken at the site to date, provides our interpretation of the subsurface data, and includes recommendations for geotechnical design and considerations for construction for the proposed 2 Harbor Street / 329 Northern Avenue Project (the "site") located in Boston, Massachusetts. This report can be provided to the Building Official to satisfy the requirements of the Massachusetts State Building Code (Building Code) 780 CMR Section 1803.1. The work summarized herein was conducted in accordance with our proposal dated 1 December 2020 and your subsequent authorization.

We appreciate the opportunity to serve on your team. Please contact us if you require additional information or wish to discuss any aspect of this report.

Sincerely yours, HALEY & ALDRICH, INC.

Lee S. Vanzler, P.E. (MA) Senior Project Manager

Enclosures

Mathrood

Michael J. Atwood, P.E. (MA) Principal

\\haleyaldrich.com\share\CF\Projects\0200427\000 - Geotechnical SD+DD Consultation\Geotech Report\2021-0517-HAI-2 Harbor Geotechnical Report_F.docx

	of Tabl of Figu		iii iii							
1.	Intro	Introduction								
	1.1	GENERAL	1							
	1.2 1.3	ELEVATION AND DATUM PROPOSED DEVELOPMENT	1 1							
2.		Conditions and Proposed Construction	3							
	2.1	SITE HISTORY	3							
	2.2	EXISTING SITE CONDITIONS	3							
3.	Subs	urface Soil and Bedrock Conditions	5							
	3.1	PREVIOUS EXPLORATIONS BY OTHERS	5							
		3.1.1 2019 Test Borings	5							
	3.2	3.1.2 2019 Test Pits SUBSURFACE SOIL AND BEDROCK CONDITIONS	5 6							
	3.2 3.3	GROUNDWATER AND FLOOD LEVEL CONDITIONS	7							
4.	Geotechnical Design Recommendations									
	4.1	GENERAL	8							
	4.2	BUILDING FOUNDATIONS	8							
	4.3	DESIGN GROUNDWATER LEVEL AND WATERPROOFING	9							
	4.4	RESISTANCE TO HYDROSTATIC UPLIFT	9							
	4.5 4.6	LOWEST LEVEL FLOOR	10							
	4.0 4.7	SEISMIC DESIGN LATERAL PRESSURES	10 11							
	4.7	RESISTANCE TO LATERAL LOADS	11							
	4.9	STORMWATER STORAGE/RECHARGE DESIGN	12							
	4.10	UTILITIES AND SITE IMPROVEMENTS	12							
5.	Cons	Construction Considerations								
	5.1	GENERAL	14							
	5.2	PRE-TRENCHING/ PRE-EXCAVATION	14							
	5.3	TEMPORARY SUPPORT OF EXCAVATION	14							
	5.4	FOUNDATION INSTALLATION	15							
	5.5	EXCAVATION	16							
	5.6	CONSTRUCTION DEWATERING	17							
	5.7	MANAGEMENT OF BURIED DEMOLITION DEBRIS/RUBBLE FILL AND EXCAVATED SOIL	17							

Page

Table of Contents

5.8GEOTECHNICAL INSTRUMENTATION175.9CONSTRUCTION OBSERVATIONS18Limitations19

6.

Figures

Appendix A – Historical Maps and Aerial Photographs

Appendix B – Available Drawings – On-Site Building, Central Artery / Tunnel (CA/T) and BWSC Utility

Appendix C – Previous Explorations by Others

Appendix D – 2019 Test Boring Logs and Observation Well Installation Report

Appendix E – Rock Core Photographs

Appendix F – 2019 Test Pit Logs and Annotated Photographs

Appendix G – Stormwater Management Systems

Page

List of Tables

Table No.	Title
1	Summary of Subsurface Soil Conditions

List of Figures

Figure No.	Title
1	Project Locus
2	Site and Subsurface Exploration Location Plan
3	Conceptual Excavation Support Design

1. Introduction

1.1 GENERAL

This report presents the results of the subsurface exploration programs completed at the site and provides geotechnical engineering recommendations and construction considerations for the proposed 2 Harbor Street / 329 Northern Avenue development. The recommendations provided herein are intended to satisfy the requirements of the Massachusetts State Building Code 780 CMR Section 1803.1. The general site location is shown on Figure 1, Project Locus, which is shown in more detail on Figure 2, Site and Subsurface Exploration Location Plan.

The information provided herein supersedes and replaces information previously transmitted in the report titled "Subsurface Data Report, South Boston innovation Campus, 2 Harbor Street/329 Northern Avenue, Boston, Massachusetts," prepared by Haley & Aldrich, Inc. (Haley & Aldrich) and dated 30 September 2019.

We have coordinated our work with the following project team members:

- Owner/Developer: BCP-CHG Harbor Property LLC
- Architect: Handel Architects, LLP
- Structural Engineer: DeSimone Consulting Engineers
- Civil Engineer: Nitsch Engineering, Inc.

1.2 ELEVATION AND DATUM

Elevations in this report are in feet and refer to Boston City Base datum (BCB), which is 6.46 ft below the North American Vertical Datum of 1988 (NAVD) and 94.35 ft above the Central Artery/Tunnel (CA/T) datum.

1.3 PROPOSED DEVELOPMENT

Our understsanding of the subject development is based on drawings titled, "100% Design Development" prepared by Handel Architects and dated 21 May 2021. This development includes demolition of the existing site building in its entirety followed by construction of a 10-story above grade office/lab/research building (refered to as "Building No. 1") positioned over a one-level below grade parking garage within the southeast portion of the site. The below-grade parking level will have an approximately 66,800 square foot (sq ft) footprint and the parking slab's finished floor elevation (FFE) will be set at about El. 4, which is about 12 ft below current site grades (assumes average existing surface grade of El. 16). Columns and walls for the new building and parking garage are planned to be supported by pile foundations installed to derive their load-carrying capacity in the bedrock underlying the site.

Discussions are also underway related to a second building ("Building No. 2") which is planned to be positioned directly to the southwest of the Building No. 1. We understand that Building No. 2 would also have a single below-grade parking level that is connected to the Building No. 1 parking level. At ground level and above, the two buildings would be separated by a courtyard. Building No. 2 would also

be supported on pile foundations. Recommendations provided herein generally apply to both Building No. 1 and Building No. 2.

Grade raises are planned along the north side of the proposed Building No. 1 through a combination of filling and hardscape/greenscape improvements that will be positioned over MassDOT and BWSC easements for the I-90 EB/WB Ted Williams Tunnel (Tunnel) and a 54-in. diameter storm drain utility (54-in. SD), respectively. In general, grade raises are anticipated to be in the range of no more than about 1 to 4 ft and will transition to existing grades at property boundaries, except for a planned hill (green feature) that gradually rises to about 11 ft above existing grade within the central portion of the final site improvements area.

2. Site Conditions and Proposed Construction

2.1 SITE HISTORY

The site, located in South Boston, historically consisted of mudflats filled in the late 1800s/early 1900s. Bordered by the Massport Haul Road to the northwest, Northern Avenue to the northeast and Harbor Street to the southeast, surface grades across the approximately 190,000 sq ft site are relatively level and generally range from approximately El. 15 to El. 17. To the south are two existing buildings - a ninestory building at 12 Channel Street and a two-story building at 7 Channel Street. Channel Street (a private way) generally bisects the site in a west-to-east direction. Historical maps (dated 1923 to 2002) and aerial photographs taken between 1938 and 2008 depicting conditions and general site uses are included in Appendix A.

2.2 EXISTING SITE CONDITIONS

An approximately 72,000 sq ft vacant, two-story steel and wood framed warehouse building built by the Navy in 1942 occupies much of the southern portion of the site (identified as 329 Northern Avenue). The remainder of the site is comprised of bituminous-paved surface parking. As noted previously, beneath the paved parking areas are easements for the Tunnel and 54-in. SD drain utility.

The existing site building's lowest floor slab was constructed at El. 20 (i.e., about 3 to 4 ft above exterior site grades). Drawings indicate the slab is about 8-in. thick with steel reinforcement in both directions set at the bottom and a welded wire mesh at the top. The building's columns and perimeter walls are pile-supported. The type of pile indicated on the drawings is "Raymond Pile." We believe a uniform tapered Raymond Pile was constructed with the tops of the piles measuring 16-in. diameter and the points tapering to 9-in. diameter. Installation details on the drawings indicated most of the piles were about 60-ft long, although an occasional pile was installed with lengths ranging from 64 to 73 ft; the piles were reportedly rated for "load-carrying capacity" that ranged from approximately 7 to 88 tons. The northern corner of the building was altered in the early 1990s to facilitate construction of the Tunnel. The above grade portion of the building was demolished, and it is presumed the concrete pile caps were removed "to grade" and the concrete piles remain in place. The approximate limits and configuration of the 329 Northern Avenue building is shown on Figure 2.

The portion of the Tunnel adjacent to the site was constructed as a cut-and-cover cast-in-place reinforced concrete box tunnel with east and west roadways separated by a median wall. The open excavation to construct the approximately 125-ft wide by 40-ft high box tunnel is believed to have consisted of steel sheetpiling with external bracing using multiple elevations of tieback anchors; we understand from review of limited archived CA/T files that the steel sheetpiling may have transitioned to concrete slurry wall at approximately Sta. 90+00 (i.e., about 300 ft to the east of the 2 Harbor property limits); refer to Appendix B. As-built drawing records of the temporary earth support system were not reviewed and thus cannot be confirmed at this time. Based on the limited available archived CA/T project records, we believe up to five (5) levels of tiebacks could have been installed and that the tiebacks were likely de-tensioned and abandoned in place. The type of tieback (steel bar or steel tendons), is not known; the length and installation angle for each tieback level cannot be verified but are shown to be about 60 to 100-ft long at an angle of about 30 degrees from the horizontal on a sketch illustrating conditions at Sta. 89+50 (more than 250 ft to the northeast of the project site); refer to Appendix B. We presume that the steel sheetpiling similarly would have been tied back using steel

tendons, and the tendons would have been detensioned and abandoned in place following backfilling around and over the Tunnel. Within the limits of the project site, the bottom of the box tunnel is generally presumed to be bearing on the natural, inorganic Marine Deposits at about El. -28 to El. -31.5. Thickness of cover (overburden soils placed over the roof of the box tunnel) ranges from about 4.4 to 7.9 ft, increasing west-to east across the site. The approximate alignment of the Tunnel is shown on Figure 2.

Parallel with the south side of the Tunnel easement is an approximately 30-ft wide easement (presumably for BWSC infrastructure), within which has been constructed various utilities, including a 54-in. diameter reinforced concrete storm drain (SD) utility. Refer to the project's Site/Civil drawings for additional information regarding the approximate depth and alignment of the 54-in. SD pipe. The invert of the pipe is estimated to be about El. 1 to El. 2.

A compilation of Drawings for the on-site building, Tunnel and 54-in. SD utility obtained through research of our files and other resources, including information made available to the project by MassDOT, are included in Appendix B.

3. Subsurface Soil and Bedrock Conditions

3.1 PREVIOUS EXPLORATIONS BY OTHERS

Previous explorations associated with the design of the Tunnel (SB2-series) and site characterization by the former site owner (B-series), have been conducted at the subject site. The designations and approximate locations of the previous explorations are shown on Figure 2, and the logs of these explorations are provided in Appendix C.

3.1.1 2019 Test Borings

During the period 24 June to 15 July 2019, Geologic-Earth Exploration, Inc. conducted five (5) test borings (designated HA19-B1 through HA19-B5) at the site for geotechnical and environmental purposes. The test borings were advanced to depths ranging from 51 to 119 ft below ground surface (bgs). A groundwater observation well (OW) was installed in completed borehole HA19-B2. Refer to Figure 2 for the designations and approximate locations of the explorations. Logs of the test borings and installation report for the groundwater observation well are provided in Appendix D; photographs of recovered rock core are included in Appendix E.

3.1.2 2019 Test Pits

During the period 22 and 29 July 2019, James W. Flett Co., excavated nine (9) test pits (designated HA19-TP1 through HA19-TP9) at the site to determine the depth to the top of the Tunnel, identify the limits of remnant Support of Excavation (SOE) system(s) abandoned in-place, and assess the composition of the soils placed as backfill above the Tunnel. The test pits were advanced to depths ranging from 4.4 to 8.5 ft bgs. Refer to Figure 2 for the designations and approximate locations of the explorations. Logs and photographs of conditions observed at the test pit locations are provided in Appendix F.

Test Pit ID	Primary Purpose of Test Pit	Observations/Conditions Encountered							
HA19-TP1	Identify top of tunnel	Top of tunnel protective slab at 4.4 ft (El. 12.5)							
HA19-TP2	Identify remnant SOE	SOE not encountered in test pit, top of ductile iron pipe at 2.7 ft (El. 3.5); top of concrete duct bank at 6.5 ft (El. 9.7)							
HA19-TP3	Identify top of tunnel	top of tunnel Top of tunnel protective slab at 7.9 ft (El. 8.4)							
HA19-TP4	Identify top of tunnel	Top of tunnel protective slab at 4.8 ft (El. 11.6)							
HA19-TP5	Identify top of tunnel	Top of tunnel protective slab at 4.6 ft (El. 12)							
HA19-TP6	Identify top of tunnel	SOE not encountered in test pit, top of concrete duct bank at 2.5 ft (El. 13.4); top of pipe at 4.3 ft (El. 11.6)							
HA19-TP7	Identify top of tunnel	Top of tunnel not encountered; top of concrete rubble at 3.3 ft (El. 12.9)							
HA19-TP8	Identify top of tunnel	Top of tunnel protective slab at 6 to 6.5 ft (El. 10.1 to El. 10.6)							
HA19-TP9	Identify top of tunnel	Top of tunnel protective slab at 6.5 to 6.9 ft (El. 9 to El. 9.4); top of concrete rubble at 2 ft (El. 13.9); top of concrete drain pipe at 3.8 ft (El. 12.1)							

A generalized summary of conditions encountered at each test pit is provided below:

3.2 SUBSURFACE SOIL AND BEDROCK CONDITIONS

Stratum/Subsurface Unit	Top of Stratum Elevation (BCB)	Range in Thickness (ft)			
Fill (Miscellaneous and Cohesive)	El. 15 to El. 17	5 to 28			
Organic Soils	El. 11 to El11	5 to 29			
Marine Deposits (Clay)	El12 to El21	43 to 70			
Glacial Deposits	El61 to El89	2 to 12			
Bedrock	El71 to El94	Depth to bedrock approximately 87 to 111 ft			

The subsurface explorations generally indicated the following sequence of subsurface units:

A summary of subsurface conditions encountered at each exploration location is included as Table I. A generalized description of the soil units encountered is provided below (one or more of the soil units may be absent at specific locations throughout the site):

- <u>Fill:</u> encountered at each exploration location ranging from 5 to 28 ft thick. The nature and composition of the Fill materials encountered vary considerably. The Fill soils can generally be described as light brown to black, gray to dark gray, loose to dense, poorly graded SAND with various amounts of silt, clay and gravel. Varying amounts of deleterious materials were encountered throughout the Fill and included ash, cinders, organic materials (peat and silt), shells, wood, fabric, brick, concrete, metal, and other debris.
- <u>Cohesive Fill</u>: encountered at location HA19-B5 beneath the Fill at a depth of 9 ft bgs, corresponding to El. 6.5. The Cohesive Fill soil is described as soft to very soft gray to black lean CLAY with trace pockets of poorly graded sands and trace shells.
- **Organic Deposits:** encountered at each test boring location ranging from 5 to 29 ft thick. In general, these materials were described as very soft to stiff ORGANIC SOIL with variable quantities of sand, shells and peat.
- <u>Marine Deposits</u>: encountered at each test boring location beneath the Organic Deposits ranging from 43 to 70 ft thick. In general, the Marine Deposits can be described as gray or tan to olive brown, hard to very soft CLAY with varying amounts of sand and gravel.
- <u>Glacial Deposits</u>: encountered beneath the Marine Deposits at depths ranging from 77 to 105 ft bgs, corresponding to El. -61 to El. -89. At locations HA19-B1 and HA19-B3, the stratum consisted of Glaciomarine Deposits described as gray, hard CLAY with varying amounts of sand and gravel; a boulder was encountered within the Glaciomarine Deposits at the locations of HA19-B1 at a depth of about 105 ft (El. -88.8). At locations HA19-B2 and HA19-B4, the stratum consisted of Glacial Till described as gray, dense to very dense SAND with varying amounts of clay, silt and gravel.
- <u>Bedrock:</u> underlying the site is known as Cambridge ARGILLITE and was encountered at depths ranging from about 87 to 111 ft bgs, which corresponds to about El. -71 to El. -94. Within the upper approximately 2 to 6 ft of bedrock, the driller was generally able to advance the borehole using a roller-bit and split-spoon sampler through what was described as weathered bedrock. Beneath the weathered bedrock, moderately hard to hard and fresh bedrock was encountered. Advance rates measured during coring ranged from about 2 to 4 minutes per foot. Rock core

recovery ranged from 75% to 100%, and the Rock Quality Designation (RQD), which represents the percent of rock pieces recovered greater than 4 in. in length relative to the total length of the core run, ranged from 58% to 82%. In general, the depth to bedrock appears to be greatest towards the northern and northwestern limits of the proposed building footprint.

The lines designating the interface between strata on the logs represent approximate boundaries, which may be gradual and vary between locations. The logs depict subsurface conditions at the specific exploration location and at the time the exploration was conducted. Subsurface conditions at other locations on the site may differ from conditions occurring at these exploration locations.

3.3 GROUNDWATER AND FLOOD LEVEL CONDITIONS

Limited measurements obtained from an observation well installed in June 2019 indicated groundwater at depths of approximately 8 to 10 ft below the existing ground surface, corresponding to approximately El. 6 to El. 8. Groundwater levels can fluctuate for numerous reasons, including precipitation, infiltration and exfiltration from utilities, and seasonal variation. The site is near Boston's Harbor's Main Channel, and additional measurements of groundwater levels will be needed to determine if site groundwater levels are tidally influenced.

The site is located within a designated flood zone having a Sea Level Rise – Base Flood Elevation (SLR-BFE) established at El. 19.5 by the City of Boston Planning & Development Agency (BPDA).

4. Geotechnical Design Recommendations

4.1 GENERAL

The following sections provide geotechnical recommendations pertaining to permanent design of the proposed structure, intended primarily for members of the project team responsible for design. The recommendations provided herein are in general accordance with the 9th Edition of the Massachusetts State Building Code (Building Code) which references the 2015 International Building Code (IBC 2015), including applicable Amendments. Guidelines for construction will be provided in the project Contract Documents, which should be reviewed by the Contractor in conjunction with the recommendations provided herein.

4.2 BUILDING FOUNDATIONS

The Fill soils, Organic Soils, and Marine Deposits are not suitable to support the new building loads. We recommend the building be designed to be supported on deep foundations installed through the overburden soils, including the Glacial Deposits, and that derive their support in end bearing in bedrock. While straight shaft caissons (drilled shafts) socketed into the bedrock and precast-prestressed concrete piles and concrete-filled steel pipe piles are technically feasible support options, we recommend steel H-piles be considered to limit excess soil generated from the installations and to minimize impacts to the adjacent Tunnel and utilities resulting from potential ground heave associated with "displacement" piles.

Specific foundation design recommendations follow. Additional details related to the foundation piles will be provided in technical provisions of specifications for the foundations.

- Steel H-piles should consist of HP14x102 piles, driven to end-bearing in bedrock, and constructed of steel conforming to current applicable ASTM and other industry standards.
- Based on structural loads and other considerations, we recommend a design capacity of 400-kip per pile in axial compression. The recommended compression capacity considers a minimum yield strength of steel (fy) = 50 kips per square inch (ksi); an allowable compression stress equal to 21 ksi; and a 1/8 in. allowance for corrosion. Final confirmation of pile compression capacity will require dynamic and possibly static load testing in accordance with the Code.
- Allowable lateral capacity, per pile, is estimated as follows, assuming up to an allowable 0.5-in. of deflection at the top of pile:

	Fixed Head	d Condition	Free Head Condition			
Pile Section	Weak Axis	Strong Axis	Weak Axis	Strong Axis		
	(y-y)	(x-x)	(y-y)	(x-x)		
HP14x102	7 kips	12 kips	2 kips	5 kips		

- Maximum allowable uplift capacity of 35 tons (70 kips) per pile.
- The steel H-piles are expected to bear in bedrock. Pile lengths are generally anticipated to be on the order of 90 to 110 ft (if driven from a prepared working grade of no lower than El. 10) and will require splicing if greater than about 90 ft.

- A minimum of three piles should be provided below individual columns unless laterally supported in accordance with the Code (1810.2.2).
- Bottoms of pile caps and grade beams should be constructed at least 4 ft below adjacent ground surfaces that will be exposed to freezing temperatures, unless insulation or other suitable protection is provided.
- It is anticipated that total settlement of structural elements supported on pile foundations as recommended herein will not exceed about 3/4 inch, with differential settlements between adjacent columns not exceeding about 1/4 inch. Most of the settlements will likely occur during construction as structure dead loads are placed on the foundations.
- The Code requires a static load test be performed for pile capacities exceeding 100 kips, unless a waiver is granted by the building official. At a minimum, an indicator pile program will be required, including dynamic testing of indicator piles, to confirm drivability conditions, hammer energy, pile lengths, and for selection of a pile(s) for static load testing (if required).

4.3 DESIGN GROUNDWATER LEVEL AND WATERPROOFING

Based on review of groundwater levels and anticipated future flood level data for the site we recommend a design maximum groundwater level at El. 19.5 be used for evaluating resistance to hydrostatic uplift for the below-grade parking level slab, sumps, pits, and other structures (e.g., sub-slab utility corridors). El. 19.5 is also recommended for calculating permanent lateral pressures on exterior foundation walls. Exterior foundation walls should be waterproofed to no less than El. 19.5.

Surface runoff should be directed away from the building. In general, ground surface within 10 ft immediately around the building should slope downward away from the structure to divert surface runoff.

4.4 RESISTANCE TO HYDROSTATIC UPLIFT

Hydrostatic uplift pressures will act on the bottom of the below grade parking slab. An alternative to designing the parking slab to resist anticipated hydrostatic pressures is to relieve hydrostatic uplift pressures with a subslab pressure relief system installed beneath the parking slab. The subslab pressure relief system should consist of 4-inch diameter perforated pipe embedded in an 8-in. to 12-in. thick layer of 3/4-in. crushed stone placed below the slab and underlain by a geotextile separator layer to reduce potential for migration of fines into the drainage layer. Because the excavation for the parking slab is anticipated to be in the Fill and/or Organic Soils, additional excavation may be needed to provide a stable subgrade on which the subslab pressure relief system can be constructed.

The subslab pressure relief plumbing will transmit water to a dedicated sump/ejector pit that will direct the seepage volume to the project's stormwater storage tank located in the garage, from which it would be pumped to the project's linear recharge gallery positioned outside and around the perimeter of the future Building No. 2 and/or to the storm drain by way of the project's stormwater system overflow connection.

We recommend the ejector pit be sized to contain two sumps (primary and redundant) and that each pump system be designed for a steady-state flow of about 5 gallons per minute (gpm) and a peak flow of about 50 gpm, and be served by a primary and backup source of power. In addition, it is recommended that the ejector pit be fully waterproofed and designed to resist a hydrostatic uplift pressure equal to

the height of water between finished parking slab elevation (El. 4) and design bottom of pit. If it is found that the weight of the ejector pit is not sufficient to resist hydrostatic pressures, the pit may need to be structurally doweled into the slab/foundation wall.

Effective performance of the sub slab pressure relief system requires that an impervious material (i.e., flow fill) plug be placed from the bottom of excavation to no lower than El. 5 in the area between the outside face of the building's foundation wall and inside face of the SOE wall. Subsurface perimeter drainage is not considered necessary.

4.5 LOWEST LEVEL FLOOR

Excavation for the below-grade parking slab is expected to extend down to at least approximately El. 2 and about El. -1 (or deeper) for pile caps and the core mat, which will be about 6 to 9 ft below anticipated "normal" groundwater level and up to 20 ft below "hydrostatic uplift design" groundwater level (El. 20). In addition, the parking slab may be underlain by approximately 15 to 24 ft of Fill and/or Organic soils. Loading of the slab, if left unsupported above the Fill and Organic soils, would be expected to cause undesirable differential settlement. Over-excavation and replacement of the underlying Fill and Organic soils is not considered practical. Accordingly, we recommend that the belowgrade parking slab be constructed as a structurally supported slab designed to span between pilesupported columns. Intermediate slab-support piles may need to be considered to reduce the span and thickness of the slab.

4.6 SEISMIC DESIGN

Under Massachusetts State Building Code 9th Edition, seismic design of structures is to be based on ASCE/SEI 7-05-Minimum Design Loads for Buildings and Other Structures as modified for Massachusetts. The Building Code requires classifying the site (Site Class A through F) depending on the soil profile within 30 meters (100 ft) bgs. After determining the appropriate Site Class and the project location within the State, site-specific design parameters are selected for use in analyses to determine the "Seismic Design Category." Based on review of subsurface data and our analyses, we recommend the following parameters in accordance with the Building Code:

- Site Class = D
- Ss = 0.217 (Note 1)
- S1 = 0.069 (Note 1)
- Fa = 1.6 (Note 2)
- Fv = 2.4 (Note 2)

Notes:

- 1. Values determined from Table 1604.11 of the Massachusetts State Building Code, 9th Edition.
- 2. Values determined from Table 1613.3.3(1) and Table 1613.3.3(2) of the International Building Code, 2015.

The soils at the site are not considered susceptible to liquefaction during the design earthquake specified in the Building Code.

4.7 LATERAL PRESSURES

Foundation and basement walls serving as retaining walls and backfilled with soil should be designed to resist at-rest lateral earth pressures as follows:

- Static Earth: use an equivalent fluid unit weight of soil equal to 60 pounds per cubic foot (pcf) to calculate static pressures above El. 19.5 (i.e., design groundwater elevation) and 90 pounds per cubic foot below El. 19.5.
- Surcharges: uniform pressure applied from the elevation of the surcharge to the bottom of the foundation element with a magnitude of 0.5q (psf), where q is the vertical surcharge load (psf), uniformly distributed over the height of the wall for restrained and unrestrained walls, respectively.
- Seismic Earth: calculate in accordance with the Code (Article 1610.2) using a total soil unit weight (γ_t) of 125 pcf.

Site retaining walls should be designed to resist active lateral earth pressures as follows:

- Retained Earth: use an equivalent fluid unit weight of soil equal to 40 pounds per cubic foot (pcf) to calculate static pressures above the design groundwater elevation (El. 19.5) and 80 pounds per cubic foot below the design groundwater elevation.
- Surcharges: uniform pressure applied from the elevation of the surcharge to the bottom of the foundation element with a magnitude of 0.33q (psf), where q is the vertical surcharge load (psf), uniformly distributed over the height of the wall for restrained and unrestrained walls, respectively.
- Seismic Earth: calculate in accordance with the Building Code Article 1610.2 using a total soil unit weight of 125 pcf.

4.8 **RESISTANCE TO LATERAL LOADS**

Lateral loads may be resisted using a combination of lateral capacity from steel H-piles and passive resistance developed against pile caps and foundation walls, including as follows:

- For site retaining walls and footing foundations supporting landscape improvements, the net allowable lateral resistance (passive minus active) provided by the backfill against the walls/footings can be calculated by using an equivalent fluid unit weight of 150 pcf above the design groundwater level (El. 19.5) and 75 pcf below the design groundwater level (El. 19.5). This value assumes that granular backfill is placed within 3 ft laterally around footings and walls, and systematically compacted in lifts to minimum 95% of maximum dry density. Values should be reduced by 25% if backfill is not systematically placed and compacted. The top of the assumed passive zone should be 6 in. below the top of the adjacent soil or backfill surface.
- A coefficient of friction between cast-in-place concrete footing and the bearing strata beneath equal to 0.45 may be used to calculate ultimate sliding resistance. A minimum factor of safety against sliding equal to 1.5 should be achieved for resistance of permanent lateral loads. The top of the assumed passive zone should be 6 in. below the top of the adjacent soil or backfill surface.

If the combination of net passive earth pressure and frictional forces between the footings and subgrade does not provide adequate lateral resistance, further evaluation of lateral resistance will be necessary.

4.9 STORMWATER STORAGE/RECHARGE DESIGN

A stormwater storage and recharge system is required to comply with storage and infiltration requirements established by the Boston Water and Sewer Commission (BWSC) and goals established by the Leadership in Energy and Environmental Design (LEED).

The system as currently designed by the project's Civil Engineer includes two systems: System 1 consists of 14,500 cf of storage in a tank positioned in the garage and from which water will be pumped to a linear recharge gallery (comprised of stone and slotted piping) positioned outside and around the perimeter of the future Building No. 2. System 2 consists of up to 4,300 cf of combined storage and recharge provided through an arrangement of stone and open-bottomed chambers that will be located in the northernmost corner of the site beneath the final site improvements.

Systems 1 and 2 are designed to facilitate infiltration of water into the miscellaneous fill soils anticipated to underlie the project site to a depth of about 20 ft below planned final site grades. For additional details, refer to the Haley & Aldrich letter titled "Stormwater Storage and Infiltration Systems" dated 15 April 2021 provided in Appendix G.

4.10 UTILITIES AND SITE IMPROVEMENTS

Site utilities beyond the building limits are anticipated to be soil-supported. Where these utilities penetrate through the foundation wall, oversized holes should be utilized to reduce the potential for utility breakage (due to post-construction settlement of the soil-supported utility). We also recommend flexible connections at utility transitions from soil-supported (outside the building) to pile supported structures (inside the building). All penetrations should be sealed and waterproofed on the exterior side of the building wall.

Similar to site utilities, sidewalks and building egress slabs could be subject to settlement in areas where grades will be raised. At building egress slabs, transition or "tipping" slabs are often used in such conditions to provide a transition between the pile-supported building and the surrounding ground. The slabs should be designed as a reinforced concrete structural slab supported at the building on a shelf cast into the foundation wall or on a concrete encased corrosion resistant bracket attached to the wall/ grade beam. The "free" end of the slab bears directly on the prepared subgrade soil. The length of such a slab is oftentimes in the range of 8 to 15 ft and usually depends on the anticipated ground settlement at that location and the allowable tilting of the slab over time. Each location should be evaluated on a case-by-case basis.

Raises-in-grade across the site footprint will also need to be reviewed on a case-by-case basis relative the schedule and sequence of utility and other site improvement installations, as well as proximity and potentially loading/impacts to the Tunnel or other existing infrastructure. Depending upon the settlement or structural sensitivity of existing infrastructure or other site improvement structures (i.e., walkways, retaining walls, etc.), use of lightweight fill material may be required to limit net stress increase resulting from the raise-in-grade. Lightweight fill materials may consist of expanded shale aggregate (e.g., Norlite) and/or expanded polystyrene (e.g., Geofoam). Over-excavation of select

"normal weight" fill may be required, as necessary to further limit net stress increase and mitigate resulting ground subsidence.

New utilities and site structures should be evaluated relative to resistance to hydrostatic uplift forces. This will particularly be true in areas where lightweight fill material is used for grade raise materials, where there will be less load imparted by the backfill material to counteract buoyancy forces.

5. Construction Considerations

5.1 GENERAL

This section provides comments related to foundation construction, construction sequence and logistics, instrumentation and monitoring programs, and other aspects of the planned construction. Topics within this section will be incorporated into the project Contract Documents (Specification sections). Estimated quantities are provided for certain foundation/geotechnical-related components (particularly the temporary support of excavation [SOE] system) to assist prospective Contractors bidding the project; however, these quantities are for guidance only and Contractors should evaluate pricing and potential construction issues based on their own knowledge and experience with similar subsurface soil, bedrock and groundwater conditions and local practice, taking into account their own proposed construction methods, procedures, and available equipment.

In addition to the construction guidelines and recommendations provided herein, all construction activities should conform to the requirements of the Occupational Safety and Health Administration (OSHA) and all other applicable Federal, Municipal and State regulatory requirements.

5.2 PRE-TRENCHING/ PRE-EXCAVATION

Pre-trenching/ pre-excavation through the surficial fill to a depth no less than about 10 ft (and/or no less than about El. 6) in advance of installing the sheetpile system and possibly at planned foundation locations is recommended to remove obstructions that could impede sheetpiling and foundation installation. Pre-trenching should be conducted in a controlled manner – particularly where remnant foundations (former building piles may need to be removed. Excavated soil materials, after removal of materials larger than about 4 in. size, should be considered for re-use to backfill pre-trenches; where additional materials are needed to backfill pre-trenches, the Contractor shall consider placing other approved materials into the pre-trench should also be controlled and compaction of the backfill should be conducted to the extent practical (e.g., tamping with the excavator bucket).

Remnant tieback anchors associated with the adjacent existing Tunnel's support of excavation system may be encountered during sheetpile installation – primarily along the northern side of the sheetpile SOE system. For current planning purposes, assume that pre-augering or spudding at discrete locations (e.g., at regular intervals in the range of 4 to 5-ft in length along the northern side of the SOE system) could be required to facilitate clearing/removing abandoned tiebacks. It is anticipated that 2 to 3 levels of tiebacks could be encountered along the northern side of the sheetpile SOE system; refer to sketch included in Appendix B.

5.3 TEMPORARY SUPPORT OF EXCAVATION

Temporary excavation support will be required along the entire building perimeter to limit the lateral extent of the excavation, limit impacts to adjacent properties and structures, control groundwater seepage, and maintain groundwater levels outside the excavation for the below grade parking structure and foundations. The type of lateral earth support system recommended to satisfy these requirements is an interlocking steel sheetpile wall; the sheetpile section selected should be hot-rolled. The position of the sheetpiling should consider the configuration of the proposed foundations and methods to form

perimeter below-grade walls. Steel sheetpiles should be installed using a variable-moment/ variable frequency (VMVF) vibratory hammer to allow adjustment of the hammer energy to mitigate the magnitude of construction-induced vibrations.

Although final SOE design is typically by the Contractor, we have conducted analyses to develop a conceptual layout of excavation support as shown on Figure 3, which consists of a combination of cantilevered and internally braced (1-level) steel sheetpile SOE system. The SOE system as shown was developed assuming 2-sided forms would be utilized for below grade foundation wall construction and a maximum lateral wall movement criterion equal to about no greater than 2 to 4 inches along the north (Tunnel/ 54 in. SD) and east (Northern Avenue) sides, and up to 6 inches along the south and west (Harbor Street) sides. In order for the SOE system as shown to satisfy those lateral movement criteria, the system relies on certain assumptions (e.g., site grade bench cut and limits on surcharge magnitude and proximity to the sheet piling wall). The system and assumptions shown on Figure 3 are not intended to be a Contractor-requirement but rather are provided for the purpose of obtaining budget level pricing.

The Contractor and the Contractor's SOE Designer should consider the sequencing of the sheetpiling installation relative to the steel H-pile foundation installations for the building and the sequencing of excavation activities in the evaluation of bracing requirements. Furthermore, the alignment and performance tolerance of the excavation support system should consider the proposed methods for forming, placing, waterproofing and backfilling of the foundation wall (e.g., two-sided formwork with positive side waterproofing and placement of impervious backfill (flowable fill) between the sheetpiling and outside face of foundation wall; or one-sided formwork with any necessary surface preparation to sheetpile wall to facilitate placement and protection of blind-side waterproofing.

5.4 FOUNDATION INSTALLATION

We recommend the following be considered when planning for driven pile installations:

- Each pile should be outfitted with a steel point (driving shoe) at the tip to facilitate penetration into the bearing stratum and to minimize potential pile damage. Over-sized materials and other subsurface obstructions should be anticipated in the Fill soils including remnant pile caps and piles from the existing on-site building. Near surface pre-excavation may be required to remove buried obstructions in advance of pile driving activities. Pre-augering to reduce heave is not currently anticipated; however, see next bullet below regarding other potential subsurface obstructions.
- Remnant tieback anchors associated with the adjacent existing Tunnel support of excavation system may be encountered during pile installation along at least grid lines 1, 1.5, 2.5, and 3. While pile installations at these locations may be impacted (i.e., slowed installation progress and cause potential misalignment/out of plumbness), we would expect that advancement of the steel H-pile through the overburden soils should be able to overcome the potential interference presented by the abandoned tiebacks. For planning purposes, we recommend that the Contractor include a contingency allowance for spudding or pre-augering (and backfilling with approved materials) at 25% of the pile cap locations along these grid lines.
- Steel H-piles may be initially advanced with a vibratory hammer (VMVF); an impact hammer must be used for final driving to end bearing. The selected hammer should be capable of delivering the minimum rated energy that is compatible with the design pile configuration and

capacity. The Contractor should propose a final driving criterion for the selected hammer rated energy, based on the results of computer Wave equation analyses (i.e., GRLWEAP) conducted by the Contractor's Engineer.

- Prior to starting production pile installation, the Contractor will be required to successfully complete a dynamic testing program, and may be required to undertake and successfully complete a static load testing program to verify design compression capacity.
- Foundation pile installations will cause noise and vibrations that can disturb people and may become a nuisance to the adjacent business operations, disrupt computers, cause settlement to utilities (e.g., 54-in. SD), and impact other sensitive receptors (e.g., the Tunnel). Mitigation measures (e.g., designated hours for pile driving activities), if any, should be planned prior to construction to reduce possible delays during construction. In addition, vibrations from pile installations can cause vibrations that might impact freshly placed concrete. It is recommended that vibration monitoring be conducted during construction to develop a correlation between vibrations and distance. Initially (until that correlation is formed) it is recommended that vibration generating activities shall not be conducted within 100 ft of fresh concrete that is less than 24 hours old. In addition, vibration generating activities shall not be conducted within 50 ft of fresh concrete that is less than 48 hours old.

Production piles should be installed from (or near) existing site grades to avoid equipment stability issues if operating within/near the Organic Deposits. Design cut-off elevation for piles is anticipated to be several feet below the pile installation grade. Following completion of pile installations and during excavation for the below grade parking structure, pile stickups will need to be carefully cut down and protected as the excavation proceeds.

5.5 EXCAVATION

The Fill soils likely contains over-size materials including debris, cobbles and boulders, and remnant foundations (concrete pile caps, concrete piles) from the former on-site building to be demolished. Excavations will be required for construction of the below-grade parking structure, pile caps, grade beams, elevator pits, utilities and other features. We anticipate that excavations can be conducted using conventional, mechanical earth-moving equipment. Excavation depths are anticipated to range from about 13 to 18 ft below existing site grades, although those depths could possibly be adjusted should the Contractor consider benching down to a uniform elevation at the start of construction to allow for a more efficient working grade for planned foundation installation activities and reduce lateral surcharging demands on the SOE system.

Following foundation installations, excavation to construct the below grade parking structure, pile caps and grade beams will need to consider protection of foundation elements and maintaining those elements within positional tolerances for subsequent pile cap construction. The Contractor is advised to develop a coordinated excavation sequencing plan to limit movements of the support of excavation (SOE) system, to also limit movement of foundation piles – primarily those piles installed to support the exterior perimeter pile caps, which are closest to the SOE system.

In addition, the excavation bottom is anticipated to be underlain by up to approximately 13 to 23 ft of Fill and/or Organic soils that may be loose/soft and unstable – even more so from the vibrations induced from sheetpile and pile installation activities. Upon reaching design bottom of excavation the

Contractor may also need to over-excavate in advance of placement of a mud mat to achieve a suitable working surface, which will need to be coordinated with the SOE design.

5.6 CONSTRUCTION DEWATERING

During construction, the potential exists for the need to pump and manage groundwater on a continuous basis (24/7) to construct the below grade parking structure, pile caps (including placement and protection of waterproofing against foundation walls). Dewatering may need to extend through the completion of the sub-slab pressure relief system and parking level slab is constructed.

On-site recharge may be feasible on occasion and on an intermittent basis; however, the project will need to obtain a temporary construction dewatering permit (EPA NPDES RGP) to facilitate discharge of effluent to an approved municipal system and/or water body. The time required to file and receive approval from the permitting authority can oftentimes take 6 or more months. A base dewatering system typically consists of sedimentation and pH control. However, depending upon groundwater quality, additional measures of pre-treatment prior to off-site discharge may be required. The Contractor shall be responsible for conformance with the requirements of the permit, including treatment and legal discharge of effluent.

The Contractor shall be responsible for the design and operation of the temporary dewatering system and maintenance of the support of excavation system (to control leakage at joints) so that groundwater drawdown outside the limits of the excavation is limited.

5.7 MANAGEMENT OF BURIED DEMOLITION DEBRIS/RUBBLE FILL AND EXCAVATED SOIL

Debris such as asphalt, brick, concrete, metal/steel, and other miscellaneous rubble may be present below the former on-site building; and granite blocks, wood piles, timber may be buried elsewhere on the site from historical uses. Management and disposal of these types of materials should be to an approved solid waste facility. Landfills or other soil receiving facilities will not accept solid waste; accordingly, these materials, if encountered, will require segregation from soil prior to off-site transport as solid waste.

Excess or unsuitable soil that requires off-site disposal must be managed in accordance with applicable federal, state, and local laws and regulations, including the requirements of the Massachusetts Contingency Plan (MCP, 310 CMR 40.000). Soil designated for off-site disposal will require analytical testing. If reportable concentrations of contaminants are detected in the soils, regulatory compliance may be required in accordance with the timelines established in the MCP.

An initial soil precharacterization program has been completed; additional soil precharacterization will be undertaken prior to construction. The results of the soil precharacterization programs will be compiled into one report and provided to the Contractor once available.

5.8 GEOTECHNICAL INSTRUMENTATION

A geotechnical instrumentation program is recommended to confirm predictions of soil and structure behavior, provide documented performance for the Owner's records, monitor and document the Contractor's performance, provide early warning of problems, and aid assessments of the need for measures to mitigate unacceptable movements. The various types and proposed locations of

instrumentation that are recommended as a minimum to be installed and monitored during construction, along with performance criteria, are included in the project Contract Documents.

In general, geotechnical instrumentation (by the Owner and Contractor) is planned to include the following:

- Survey points to measure vertical movements of adjacent buildings, structures and streets;
- Offset survey points to measure vertical and lateral movements of the top of the temporary support of excavation system;
- Vertical monitoring points set on top of the Tunnel's roof protective slab and at manholes located along the alignment of the BWSC's 54-in. diameter storm drain utility; and
- Seismographs to monitor vibrations along the alignment of the tunnel and BWSC storm drain utility.

In addition, we recommend the Owner conduct a pre-construction conditions survey (video/photo documentation) be conducted of the exterior of select buildings, streets, and sidewalks adjacent to the site; and the Tunnel per the limits agreed to with MassDOT; we also recommend that a video survey of the existing 54-in. storm drain be conducted prior to the start of construction. The purpose of the pre-construction conditions survey is to document existing readily observable physical conditions of structures, surface improvements, and infrastructure near the work to establish a baseline before work at the subject site begins.

5.9 CONSTRUCTION OBSERVATIONS

We recommend that an engineer or technician, qualified by training and experience, be present to make observations during pertinent construction phases such as pre-trenching activities, support of excavation installation, foundation installation and load testing (dynamic and static), site excavation and dewatering, and final subgrade preparation of foundation subgrades. The general purpose of the on-site monitoring program is to provide accurate documentation of construction activities, correlate these activities with visual observations and measurements obtained from the instrumentation data, and verify compliance with the Code and project Contract Documents.

6. Limitations

This report has been prepared for specific application to the proposed development at 2 Harbor Street / 329 Northern Avenue in Boston, Massachusetts. This report is intended for the exclusive use of the project team in connection with the geotechnical aspects of the project as described herein. In the event that changes in the nature, design, or location of the facilities are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and conclusions of this report are modified or verified in writing by Haley & Aldrich.

The analyses and recommendations submitted in this report are based in part upon data obtained from the referenced subsurface explorations. The nature and extent of variations between the explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report. The applicability of the recommendations in this report should be confirmed after structural and site grading designs are finalized.

The scope of work undertaken for this Report does not include the development of criteria or procedures to minimize the risk of mold or other biological pollutant infestations in or near any structure nor does it include a site assessment for the presence of oil or hazardous materials as defined by the Massachusetts Oil and Hazardous Materials Prevention and Response Act (M.G.L. Chapter 21E).

\\haleyaldrich.com\share\CF\Projects\0200427\000 - Geotechnical SD+DD Consultation\Geotech Report\2021-0517-HAI-2 Harbor Geotechnical Report_F.docx

TABLES

TABLE I SUMMARY OF SUBSURFACE SOIL CONDITIONS SOUTH BOSTON INNOVATION CAMPUS 2 HARBOR STREET / 329 NORTHERN AVENUE BOSTON, MASSACHUSETTS FILE NO. 132753-006

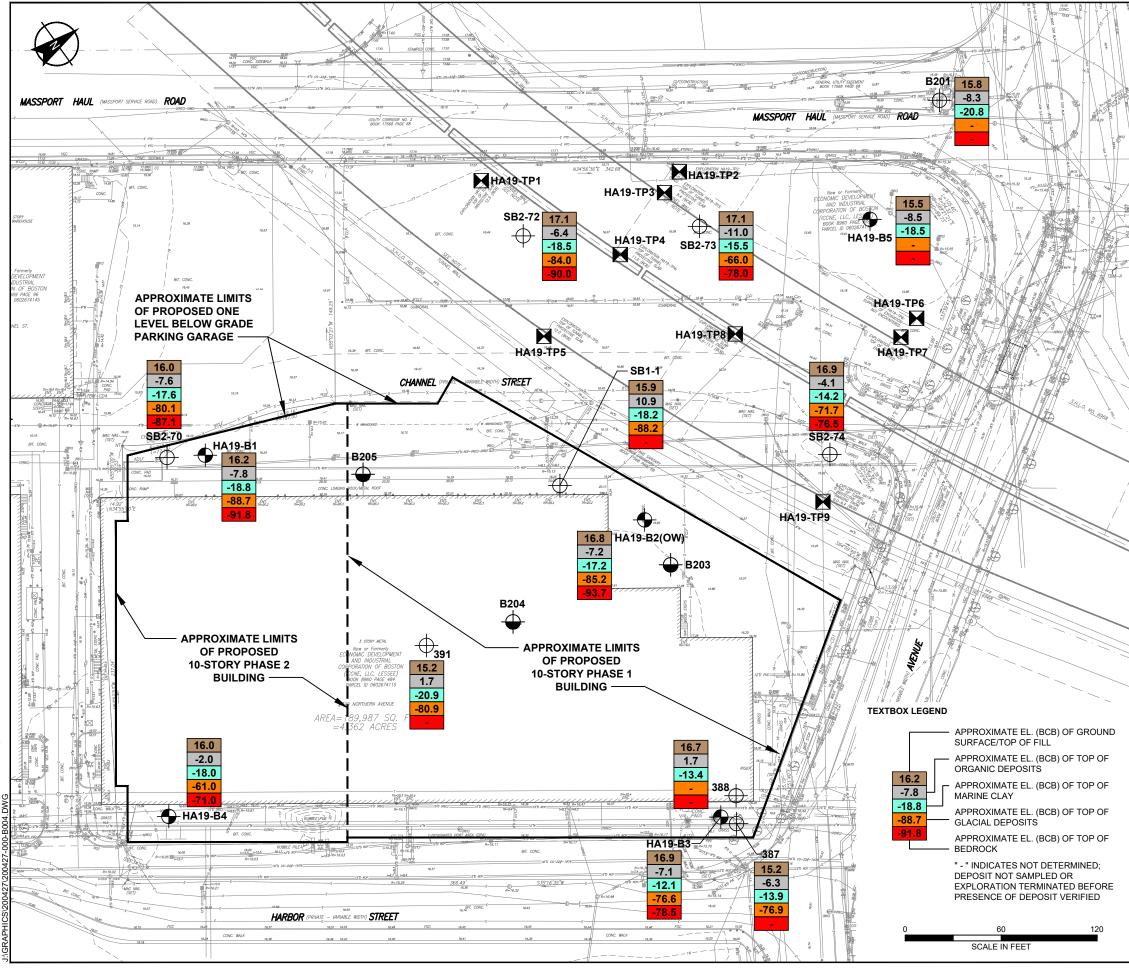
EXPLORATION	DEPTH OF	GROUND SURFACE EL.	FILL ORGANIC DEPOSITS			MARINE DEPOSITS (CLAY)		GLACIAL DEPOSITS			BEDROCK			
DESIGNATION	EXPLORATION	(BCB) (NOTES 1,2)	THICKNESS	DEPTH TO TOP	EL. OF TOP	THICKNESS	DEPTH TO TOP	EL. OF TOP	THICKNESS	DEPTH TO TOP	EL. OF TOP	THICKNESS	DEPTH TO TOP	EL. OF TOP
	(FT)	(808)	(FT)	(FT)	(FT, BCB)	(FT)	(FT)	(FT, BCB)	(FT)	(FT)	(FT, BCB)	(FT)	(FT)	(FT, BCB)
RECENT HALEY & ALDRICH TEST BORINGS (2019) HA19-B1 HA19-B2(OW) HA19-B3 HA19-B4 HA19-B4 HA19-B5 PREVIOUS EXPLORATIONS ^(NOTE 3)	119.0 119.0 104.0 94.0 51.0	16.2 16.8 16.9 16.0 15.5	24.0 24.0 24.0 18.0 24.0	24.0 24.0 24.0 18.0 24.0	-7.8 -7.2 -7.1 -2.0 -8.5	11.0 10.0 5.0 16.0 10.0	35.0 34.0 29.0 34.0 34.0	-18.8 -17.2 -12.1 -18.0 -18.5	69.9 68.0 64.5 43.0 > 17.0	104.9 102.0 93.5 77.0 -	-88.7 -85.2 -76.6 -61.0 -	3.1 8.5 1.9 10.0 -	108.0 110.5 95.4 87.0 -	-91.8 -93.7 -78.5 -71.0 -
SB1-1	114.3	15.9	5.0	5.0	10.9	29.0	34.0	-18.2	70.0	104.0	-88.2	> 10.3		-
SB2-70	114.0	16.0	23.5	23.5	-7.6	10.0	33.5	-17.6	62.5	96.0	-80.1	7.0	103.0	-87.1
SB2-72	110.6	17.1	23.5	23.5	-6.4	12.0	35.5	-18.5	65.5	101.0	-84.0	6.0	107.0	-90.0
SB2-73	114.5	17.1	28.0	28.0	-11.0	4.5	32.5	-15.5	50.5	83.0	-66.0	12.0	95.0	-78.0
SB2-74	111.8	16.9	21.0	21.0	-4.1	10.0	31.0	-14.2	57.5	88.5	-71.7	4.8	93.3	-76.5
B201	42.0	15.8	24.0	24.0	-8.3	12.5	36.5	-20.8	> 5.5	-	-	-	-	-
387	96.0	15.2	21.5	21.5	-6.3	7.5	29.0	-13.9	63.0	92.0	-76.9	> 4.0	-	-
388	88.0	16.7	15.0	15.0	1.7	15.0	30.0	-13.4	> 58.0	-	-	-	-	-
391	101.0	15.2	13.5	13.5	1.7	22.5	36.0	-20.9	60.0	96.0	-80.9	> 5.0	-	-
														Ĺ

NOTES:

1. ESTIMATED GROUND SURFACE ELEVATIONS ARE IN FEET, REFERENCE THE BOSTON CITY BASE (BCB) DATUM AND CORRESPOND TO THE GROUND SURFACE ELEVATION AT THE TIME OF DRILLING. 2. ELEVATIONS WERE NOT SURVEYED AND ARE THEREFORE CONSIDERED APPROXIMATE (+/-1 FT). ELEVATIONS ARE BASED ON PLAN TITLED "EXISTING CONDITIONS SURVEY", PREPARED BY

FELDMAN LAND SURVEYORS AND DATED 5 SEPTEMBER 2019.

3. PREVIOUS SELECT EXPLORATIONS CONDUCTED FOR THE CENTRAL ARTERY / TUNNEL PROJECT; LOGS OBTAINED FROM HALEY & ALDRICH, INC. FILES.


4. PREVIOUS EXPLORATIONS B203, B204 AND B205 CONDUCTED BY ESS GROUP, INC. WERE SHALLOW AND DID NOT PENETRATE THE FILL; ACCORDINGLY, EXPLORATIONS NOT INCLUDED HEREIN.

ABBREVIATIONS: *-* : INDICATES NOT DETERMINED; DEPOSIT NOT SAMPLED OR EXPLORATION TERMINATED BEFORE PRESENCE OF DEPOSIT VERIFIED

">" : INDICATES TOTAL THICKNESS NOT DETERMINED; EXPLORATION TERMINATED AT DEPTH INDICATED WITHIN MATERIAL/DEPOSIT "(OW)" : INDICATES OBSERVATION WELL INSTALLED IN COMPLETED BOREHOLE

FIGURES

DAYNA Printed: 4/16/2021 11:04 AM

LEGEND

HA19-B3

DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING DRILLED BY GEOLOGIC EARTH EXPLORATION, INC. AND MONITORED BY HALEY & ALDRICH, INC. BETWEEN 24 JUNE AND 15 JULY 2019.

HA19-TP1 DESIGNATION AND APPROXIMATE LOCATION OF TEST PIT EXCAVATION COMPLETED BY JAMES W. FLETT CO., INC. AND MONITORED BY HALEY & ALDRICH, INC. BETWEEN 22 AND 29 JULY 2019.

(OW) INDICATES OBSERVATION WELL INSTALLED IN COMPLETED BOREHOLE

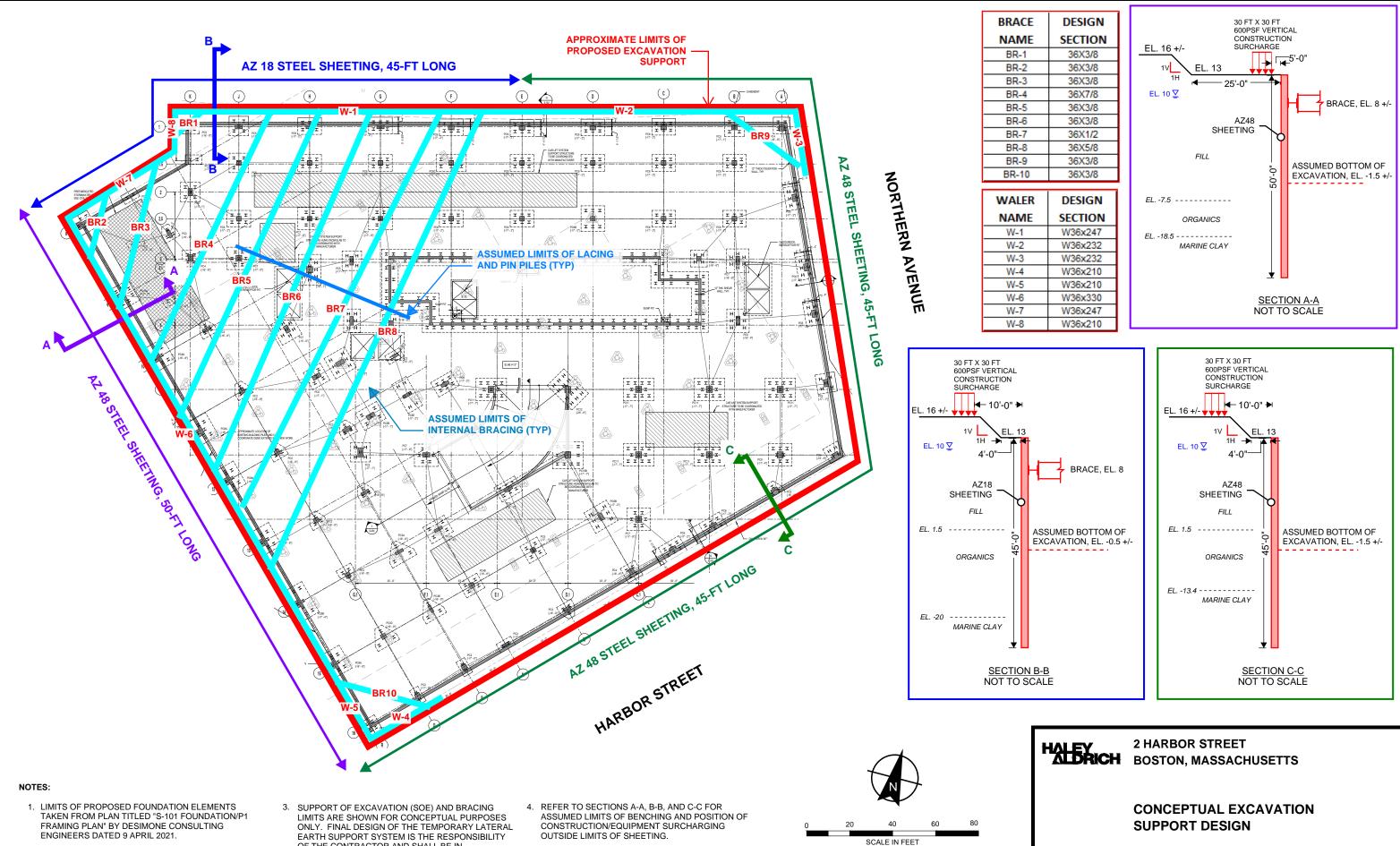
SB2-72 DESIGNATION AND APPROXIMATE LOCATION OF HISTORIC TEST BORING CONDUCTED FOR THE CENTRAL ARTERY / TUNNEL PROJECT

B204

DESIGNATION AND APPROXIMATE LOCATION OF SHALLOW TEST BORING CONDUCTED FOR CARGO VENTURES IN 2004.

NOTES

- 1. BASE PLAN OBTAINED FROM PLAN TITLED "EXISTING CONDITIONS SURVEY", PREPARED BY FELDMAN LAND SURVEYORS AND DATED 5 SEPTEMBER 2019.
- 2. CONFIGURATION OF PROPOSED BUILDINGS TAKEN FROM AN ELECTRONIC FILE TITLED "A-100 LEVEL P OVERALL PLAN.dwg", PROVIDED BY HANDEL ARCHITECTS ON 24 MARCH 2021.
- TECHNICAL MONITORING OF THE EXPLORATIONS CONDUCTED IN 2019 WAS PERFORMED BY HALEY & ALDRICH, INC.; THE LOCATIONS OF THE EXPLORATIONS WERE ESTIMATED BY TAPING TO EXISTING SITE FEATURES IN THE FIELD.
- 4. APPROXIMATE LOCATIONS OF PREVIOUS EXPLORATIONS CONDUCTED FOR CENTRAL ARTERY / TUNNEL PROJECT OBTAINED FROM "FIGURE 2A: SITE AND SUBSURFACE EXPLORATION LOCATION PLAN" AND "FIGURE 2B: SITE AND SUBSURFACE EXPLORATION LOCATION PLAN", TAKEN FROM REPORT TITLED "FINAL GEOTECHNICAL DATA REPORT, DESIGN SECTION D004A, CENTRAL ARTERY (I-93)/TUNNEL (I-90) PROJECT, BOSTON, MASSACHUSETTS", PREPARED BY HALEY & ALDRICH, INC. AND DATED 10 OCTOBER 1991.
- APPROXIMATE LOCATIONS OF PREVIOUS EXPLORATIONS CONDUCTED FOR CARGO VENTURES IN 2004 OBTAINED FROM "FIGURE 3: SITE PLAN" TAKEN FROM REPORT TITLED "PHASE 1 AND PHASE II ENVIRONMENTAL SITE ASSESSMENT, BOSTON FREIGHT PROJECT, SOUTH BOSTON, MASSACHUSETTS", PREPARED BY ESS GROUP, INC. AND DATED 11 FEBRUARY 2005.
- 6. TEST BORINGS B203, B204 AND B205 WERE SHALLOW EXPLORATIONS THAT DID NOT PENETRATE THE FILL; ACCORDINGLY, TEXT BOXES NOT PROVIDED FOR THESE EXPLORATIONS.



SOUTH BOSTON INNOVATION CAMPUS 2 HARBOR STREET / 329 NORTHERN AVENUE BOSTON, MASSACHUSETTS

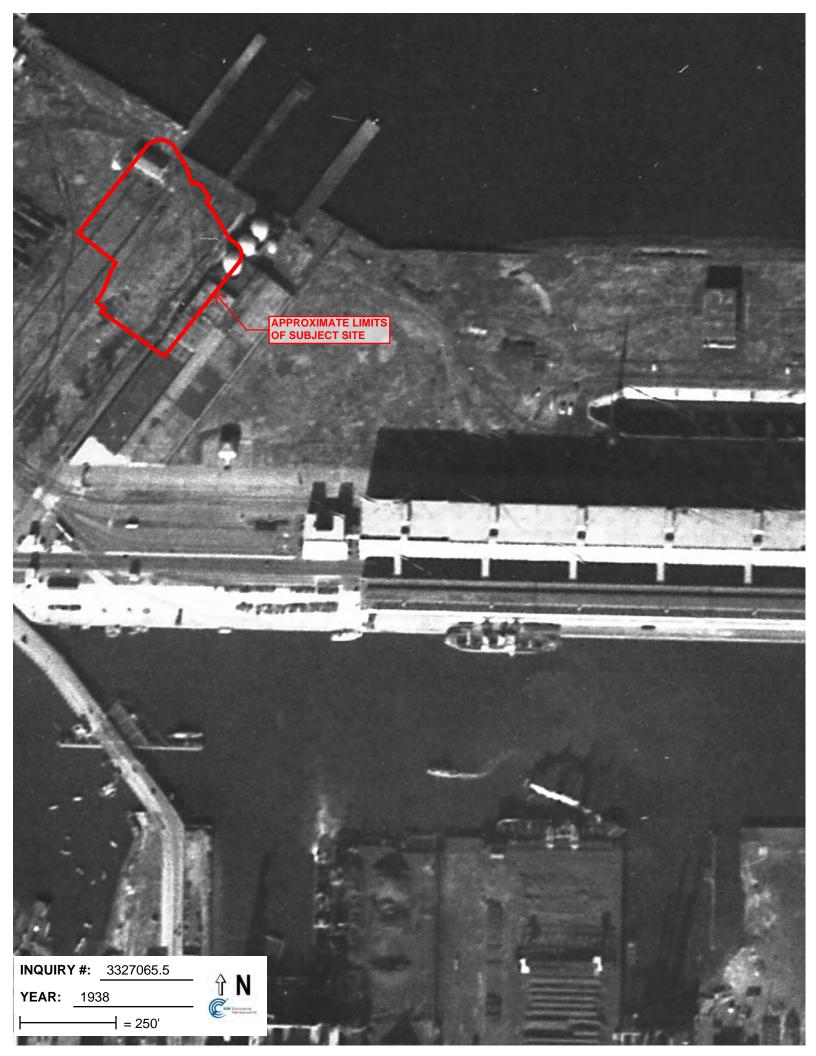
SITE AND SUBSURFACE EXPLORATION LOCATION PLAN

SCALE: AS SHOWN MAY 2021

FIGURE 2

- 2. ELEVATIONS ARE IN FEET AND REFER TO BOSTON CITY BASE (BCB).
- EARTH SUPPORT SYSTEM IS THE RESPONSIBILITY OF THE CONTRACTOR AND SHALL BE IN ACCORDANCE WITH SPECIFICATION SECTION 315000.

OUTSIDE LIMITS OF SHEETING.


5. ADDITIONAL TEST BORING EXPLORATIONS ARE PLANNED BY THE OWNER AND THAT INFORMATION WILL BE PROVIDED TO THE CONTRACTOR.

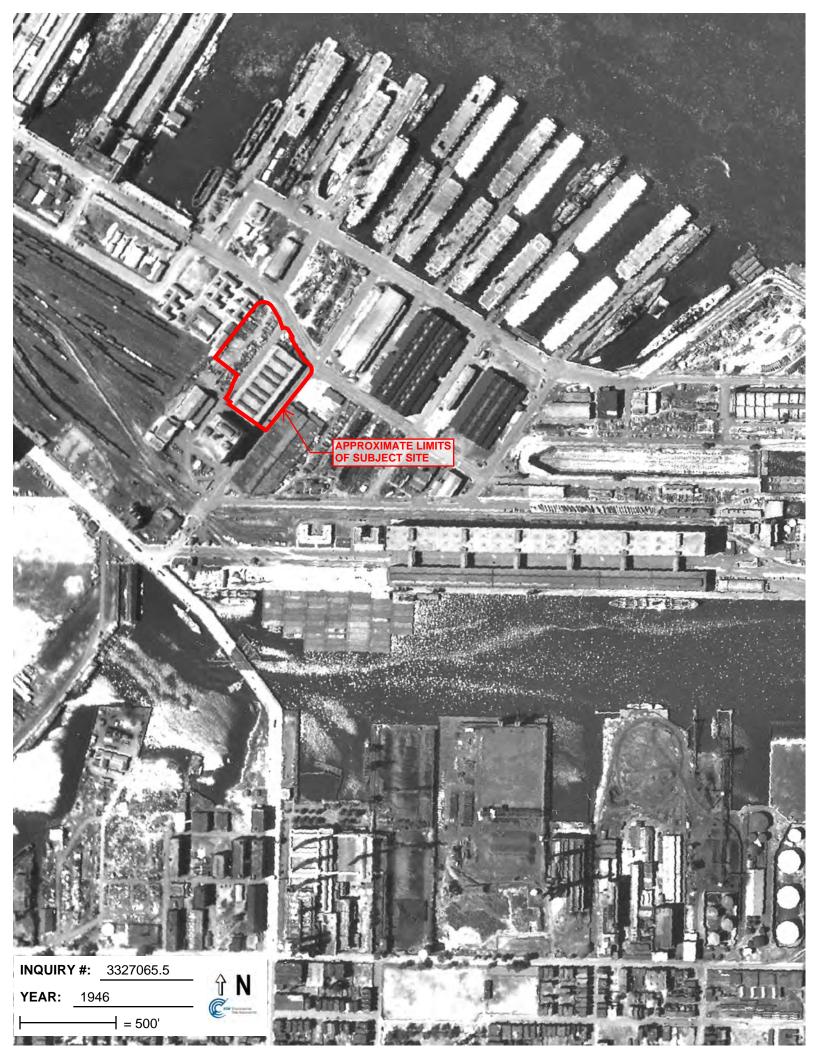
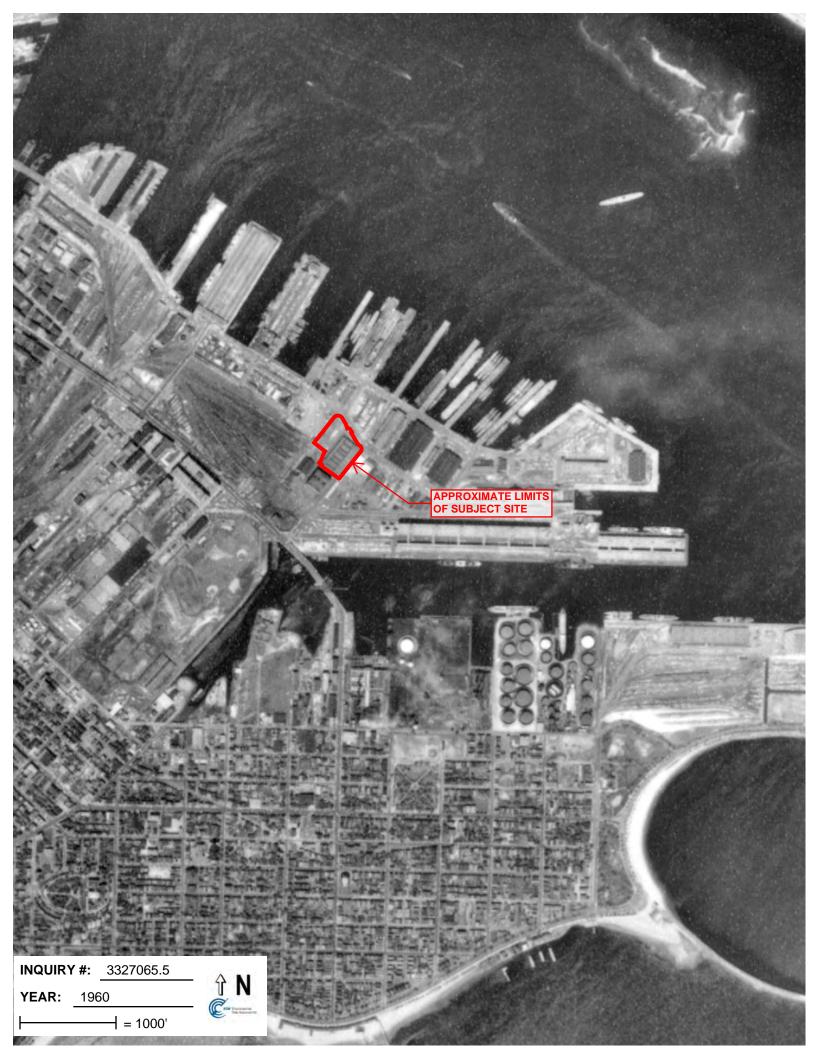
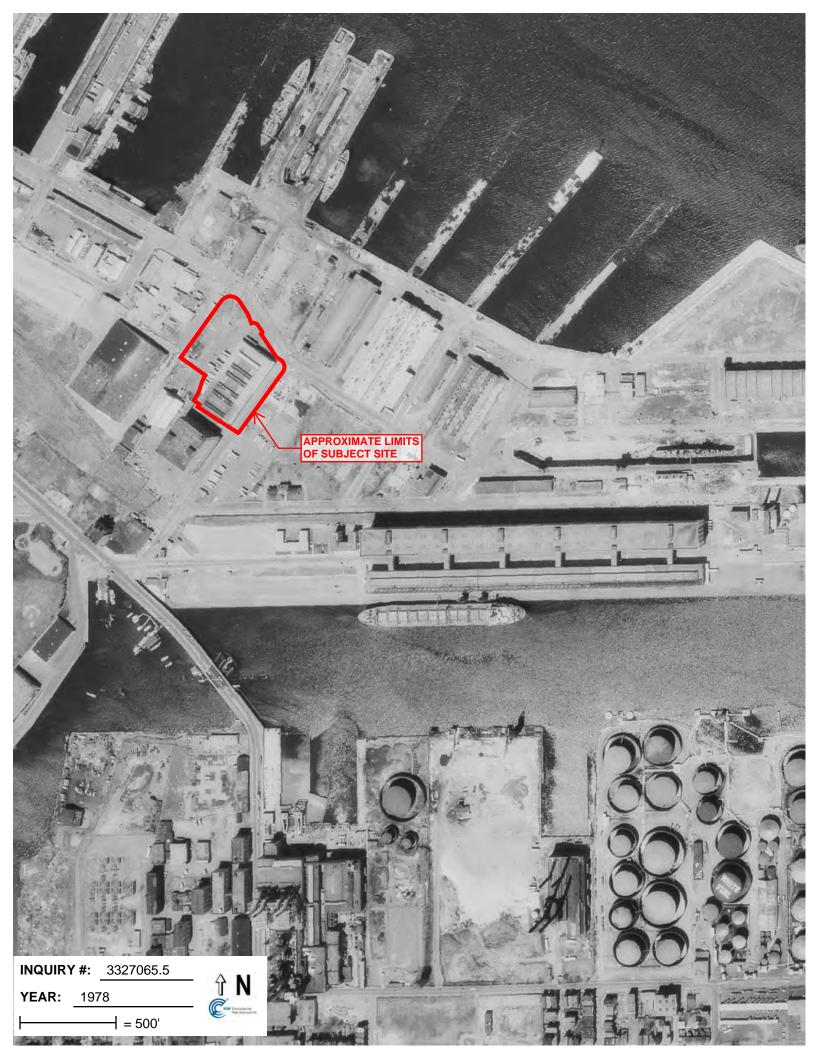
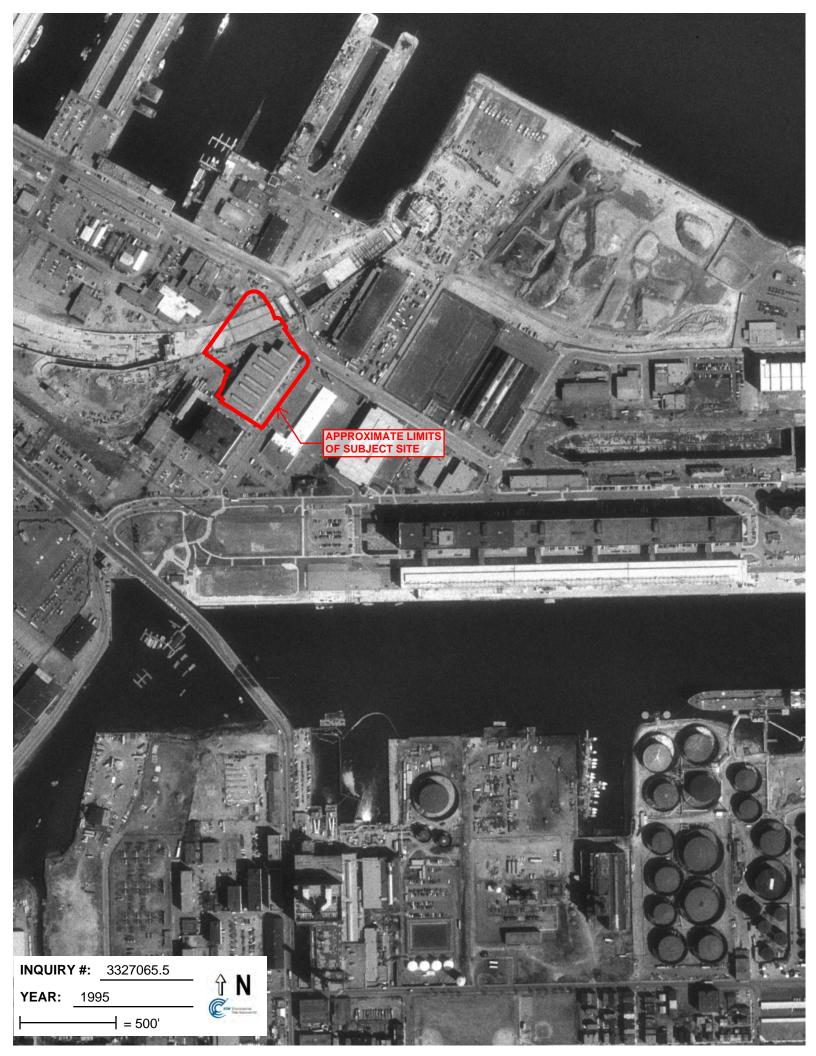

SCALE: AS SHOWN MAY 2021

FIGURE 3

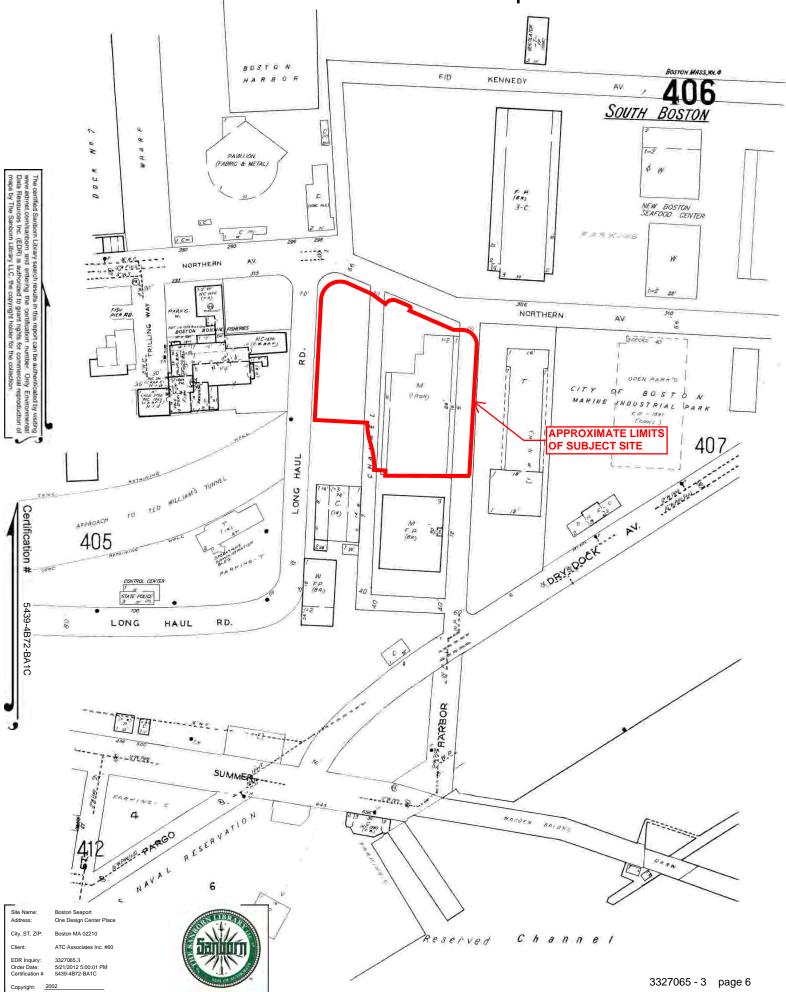

APPENDIX A

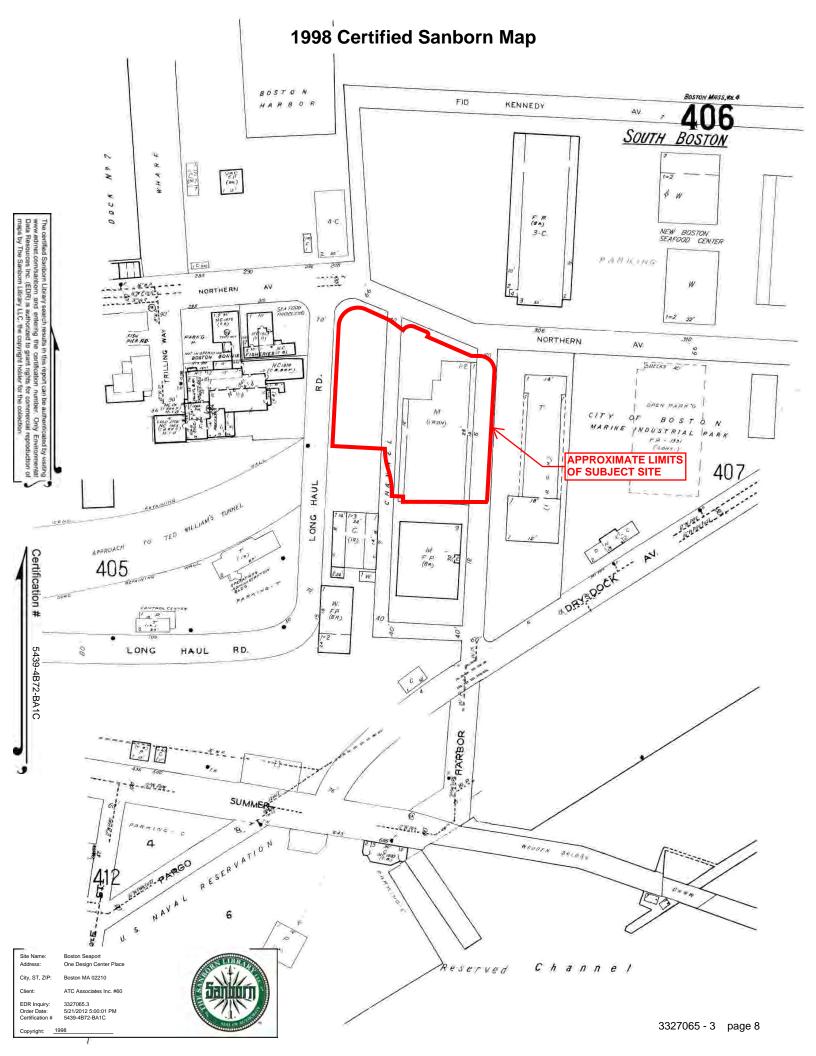
Historical Maps and Aerial Photographs

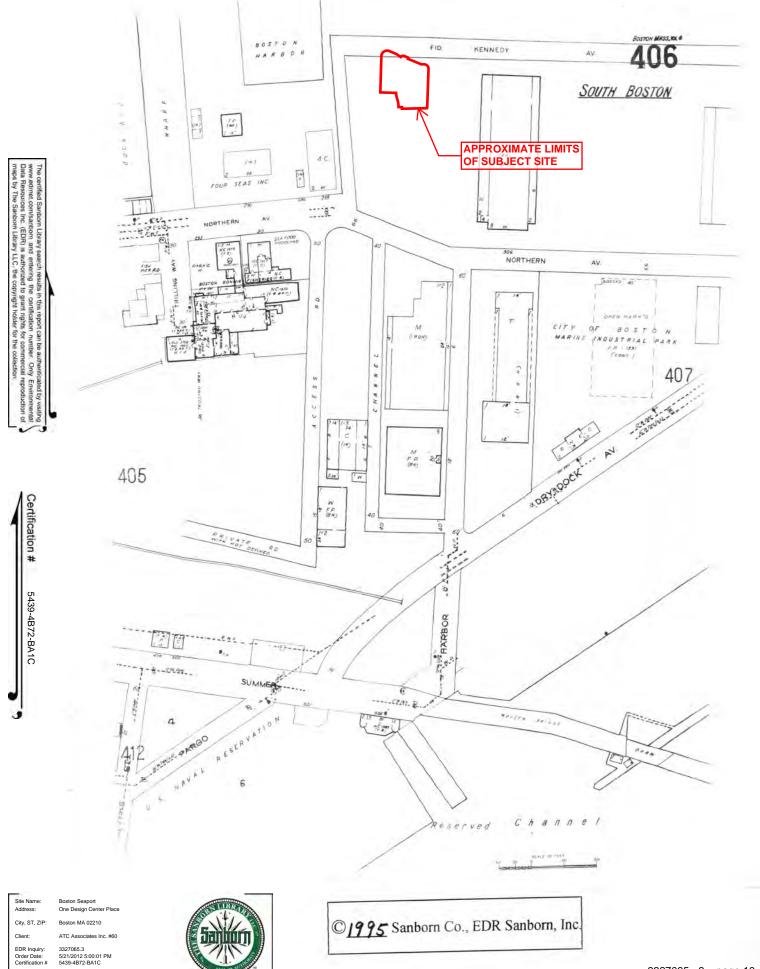




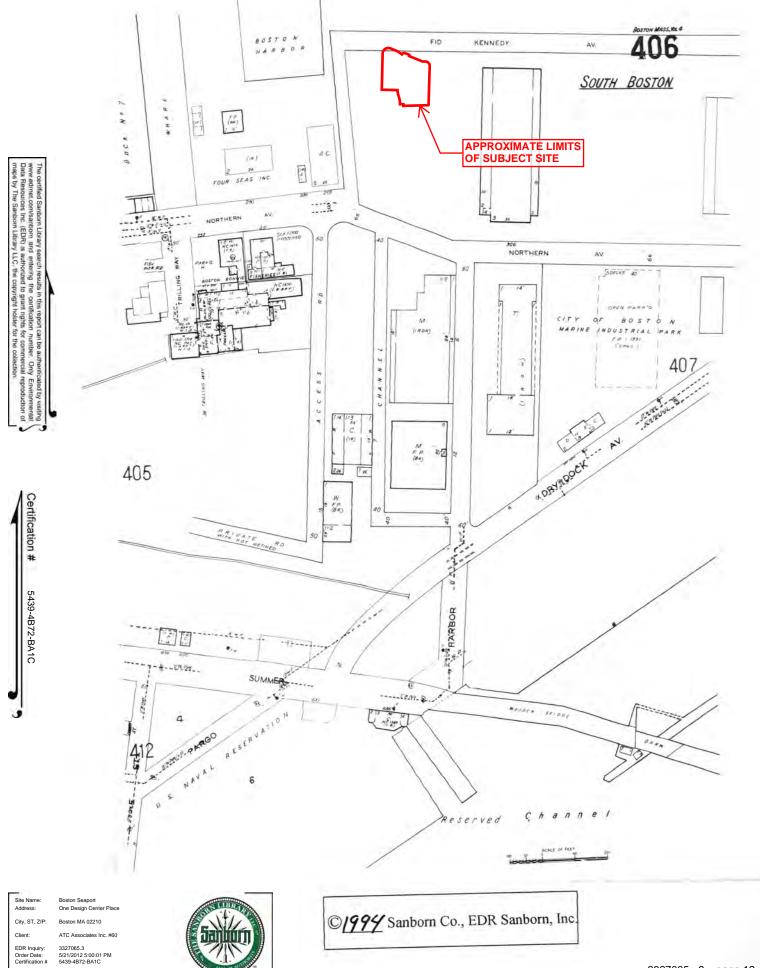
Boston Seaport

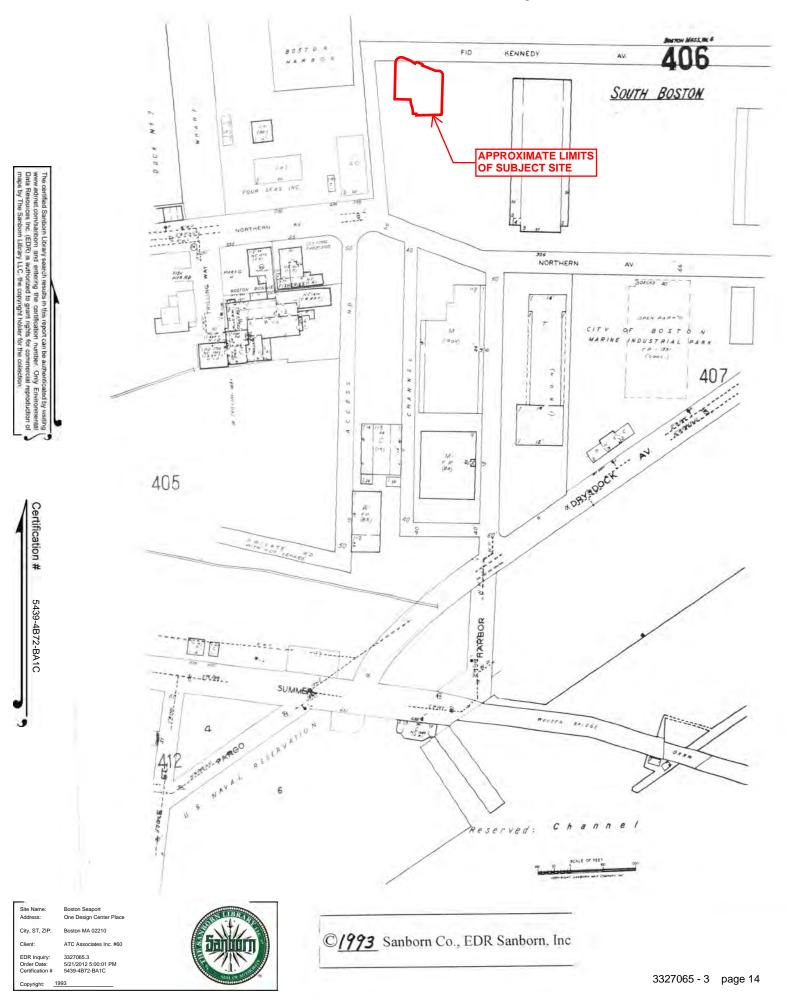

One Design Center Place Boston, MA 02210

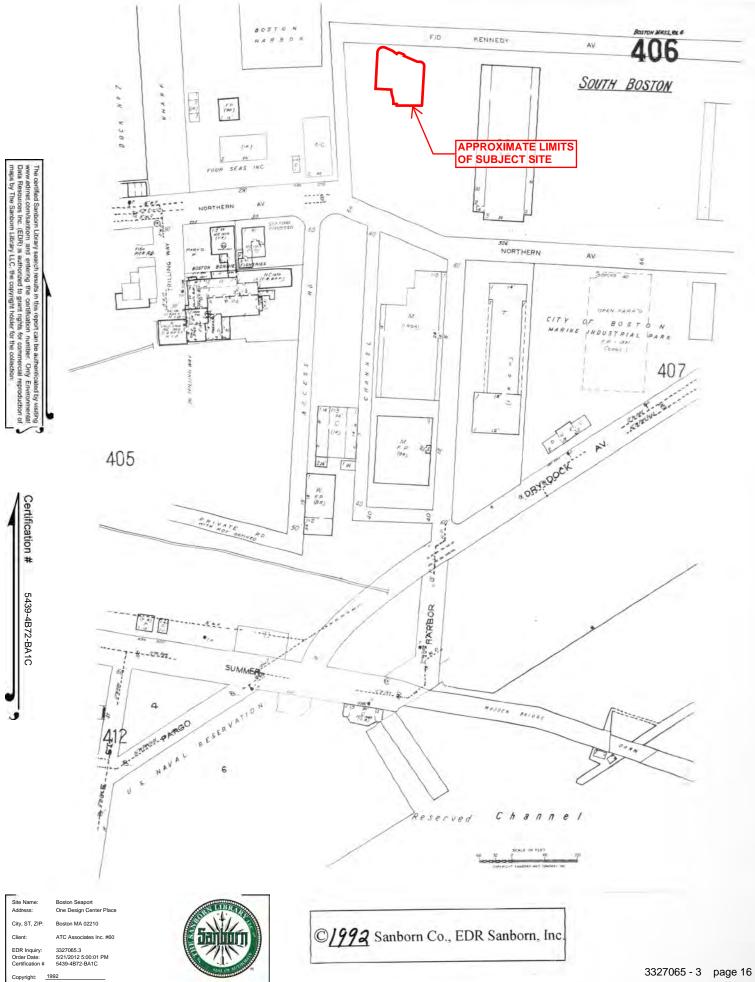

Inquiry Number: 3327065.3 May 21, 2012

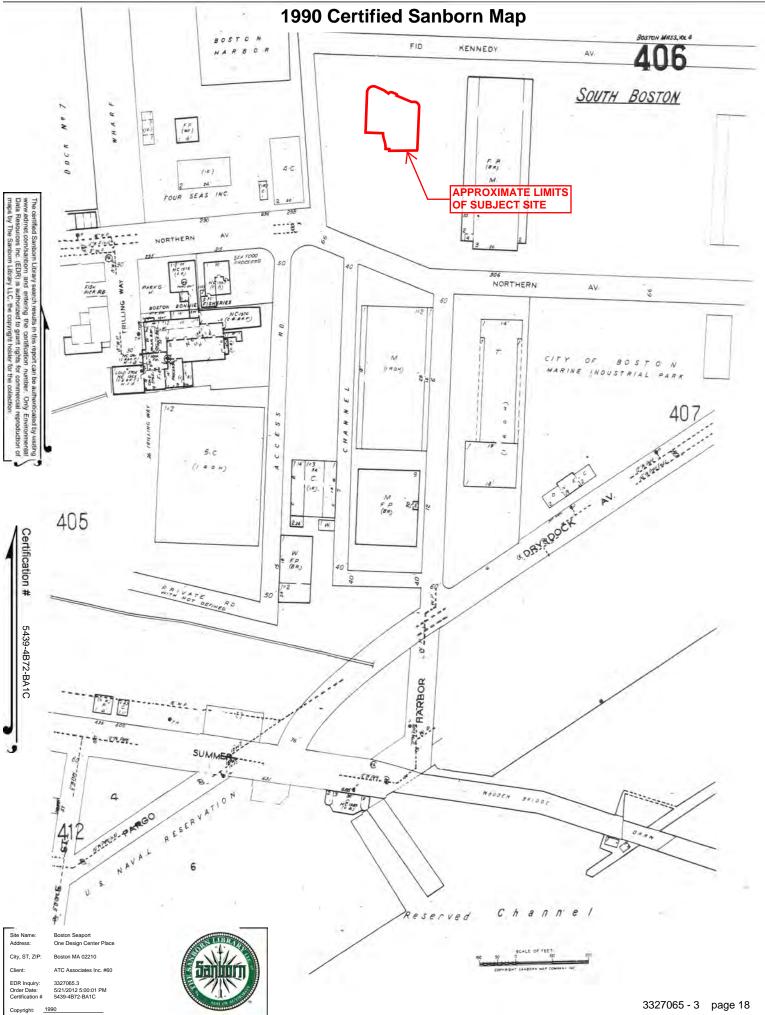

Certified Sanborn® Map Report

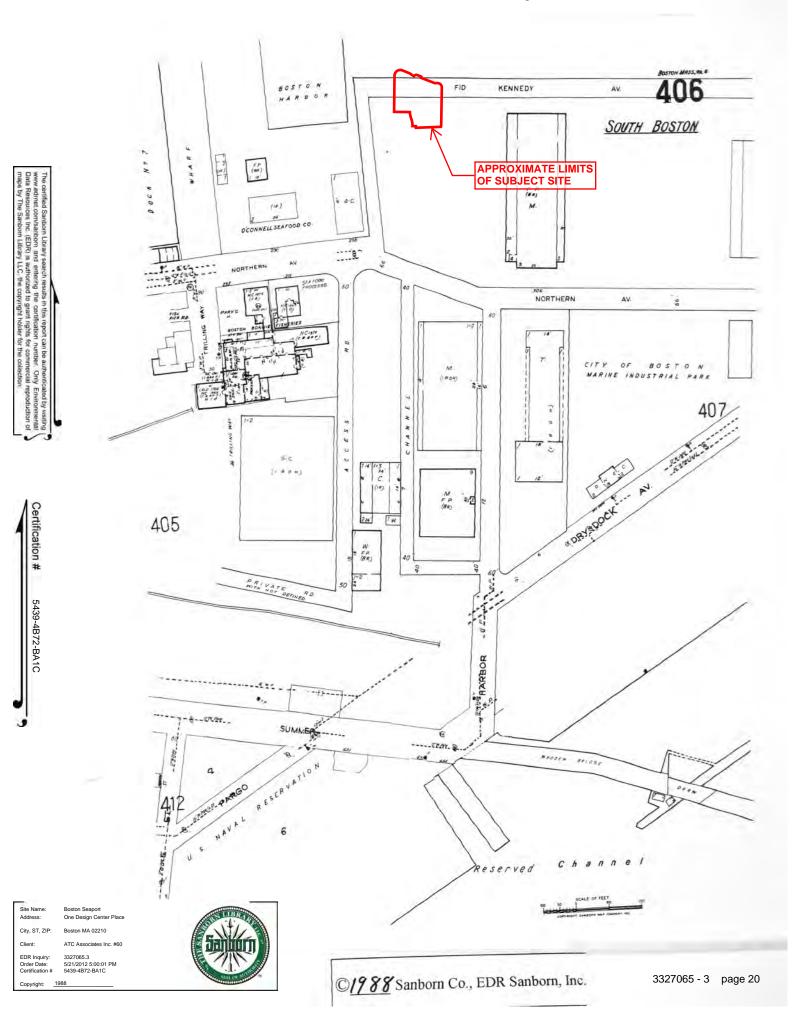
440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

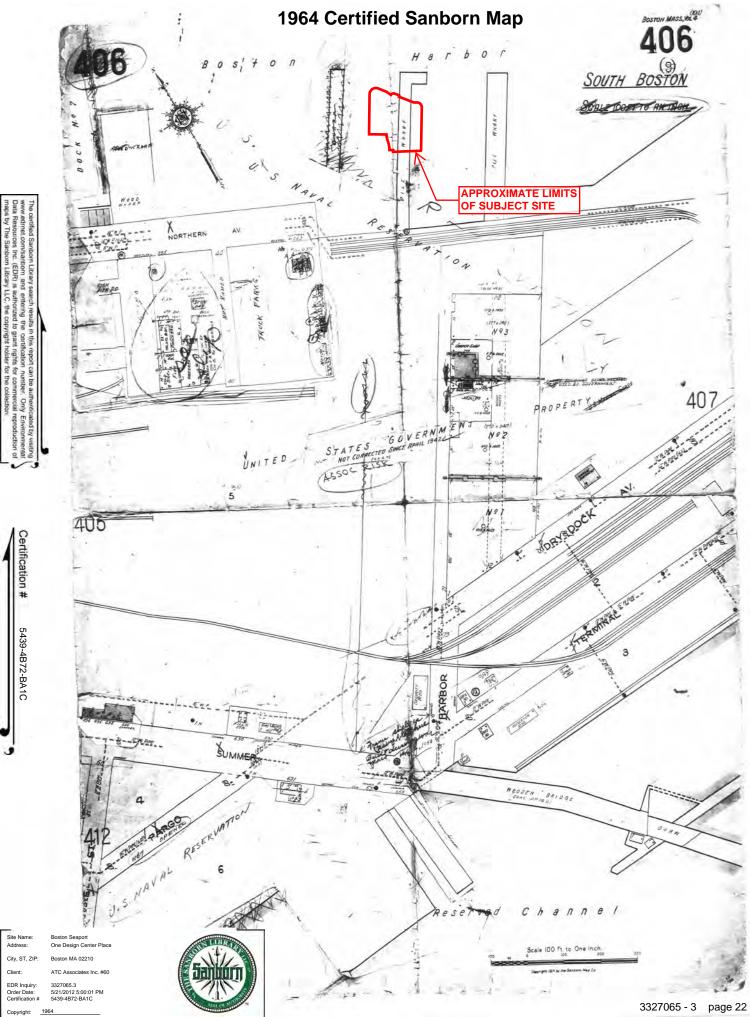


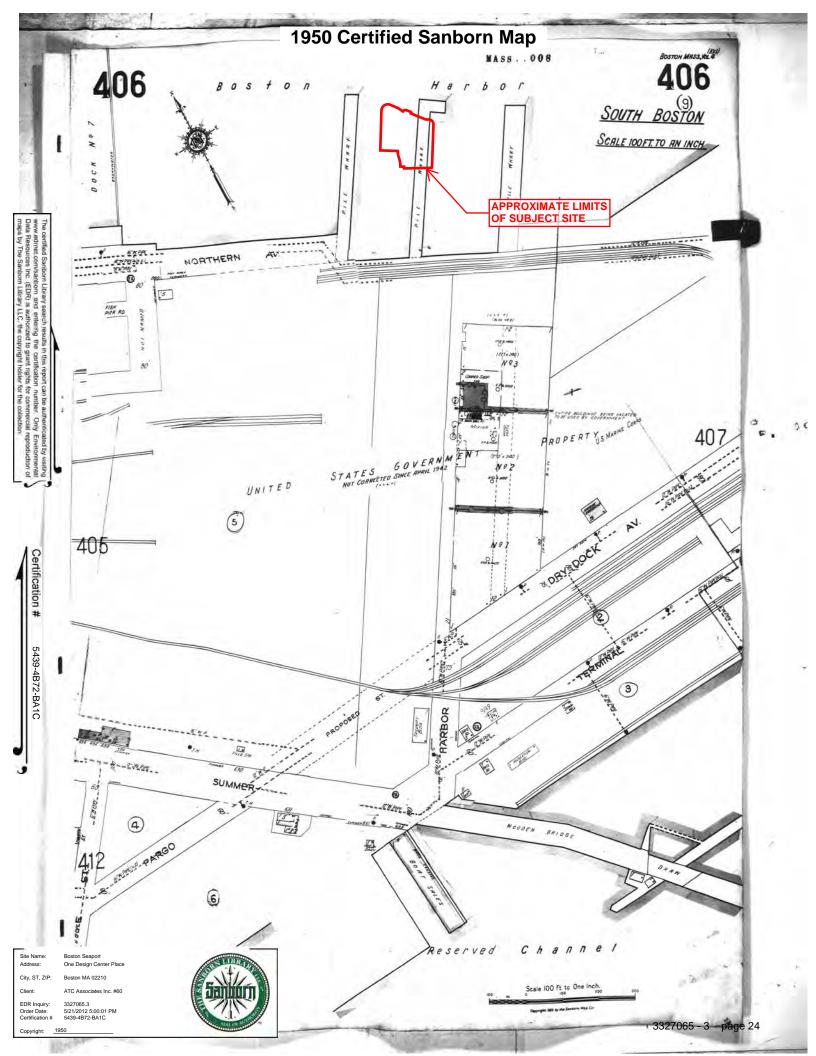

Copyright:

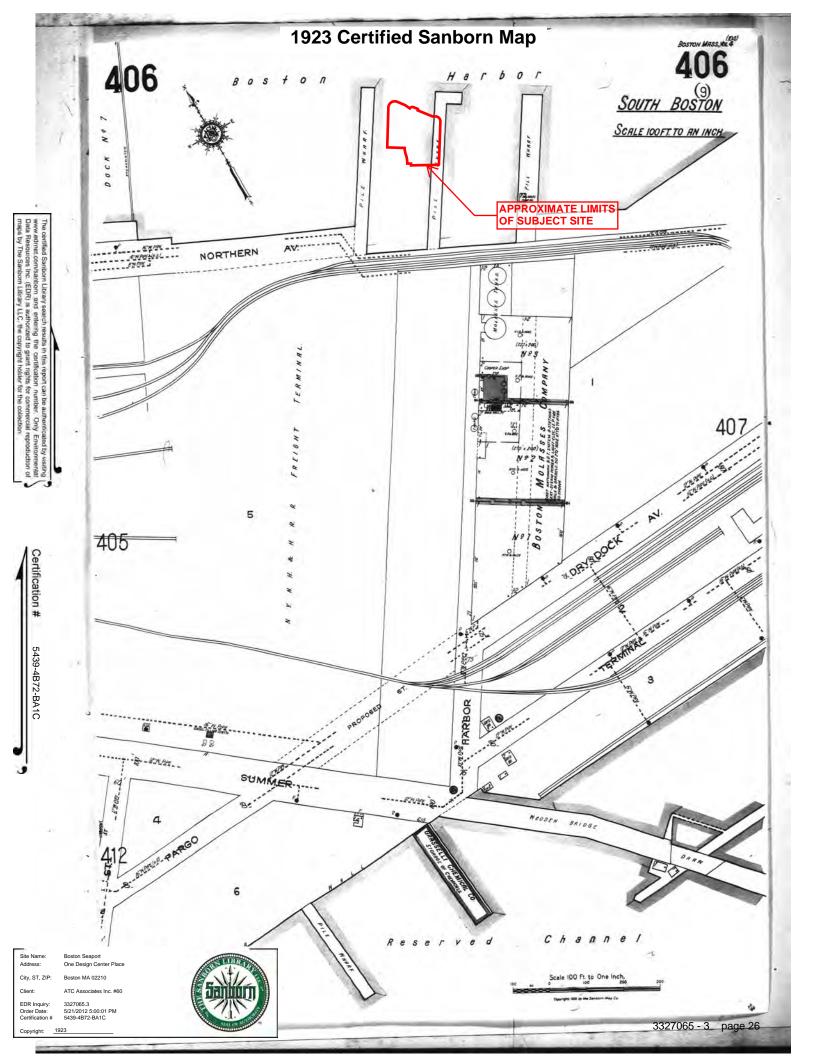

1995




Copyright:


1994





napa

3327065 - 3 page 22

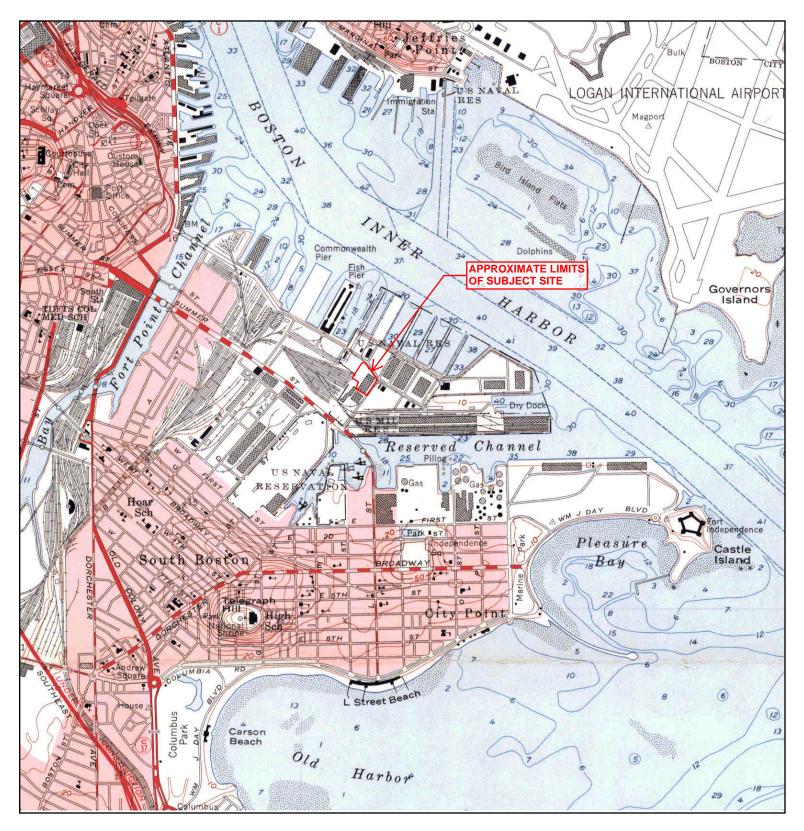
Boston Seaport

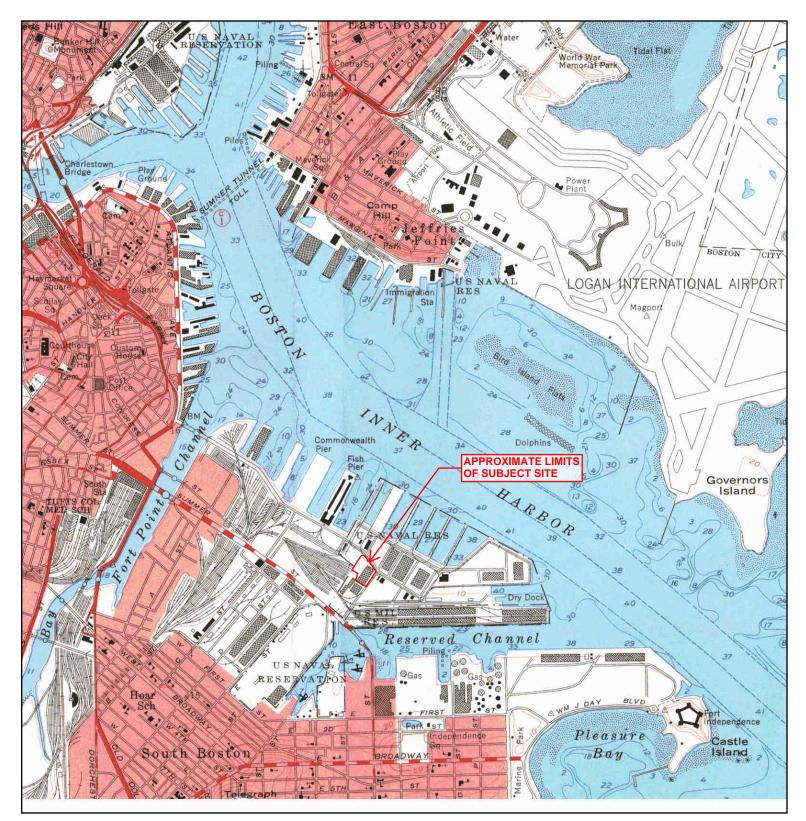
One Design Center Place Boston, MA 02210

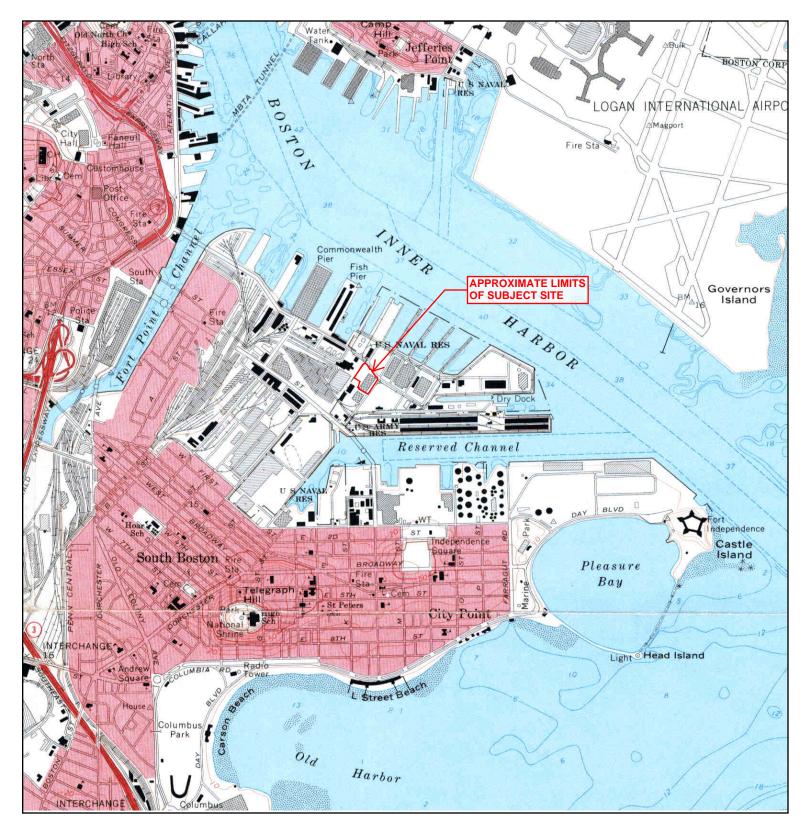
Inquiry Number: 3327065.4 May 21, 2012

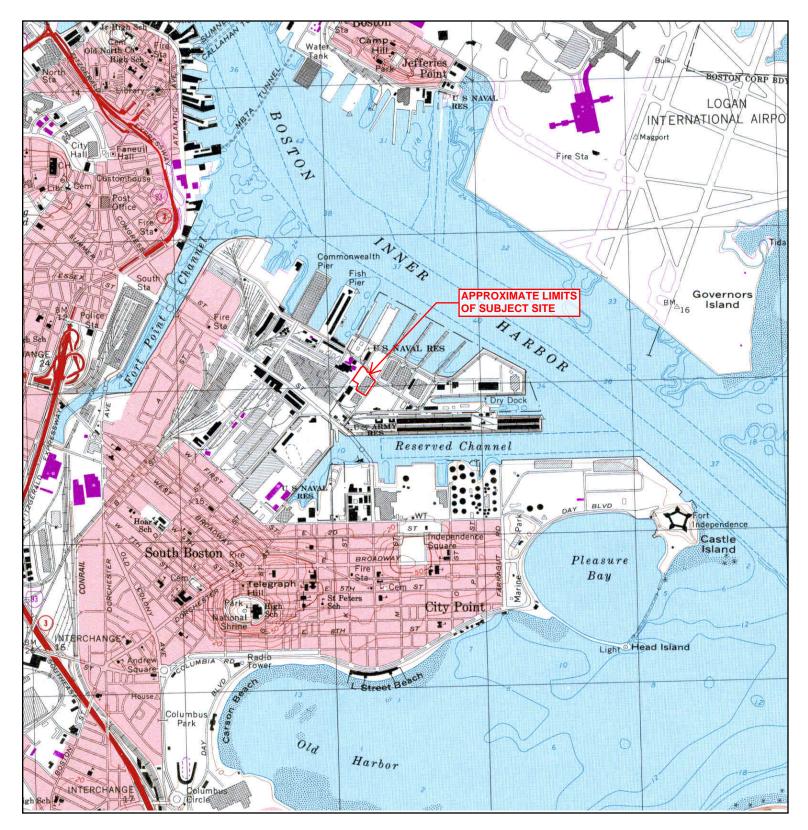
EDR Historical Topographic Map Report

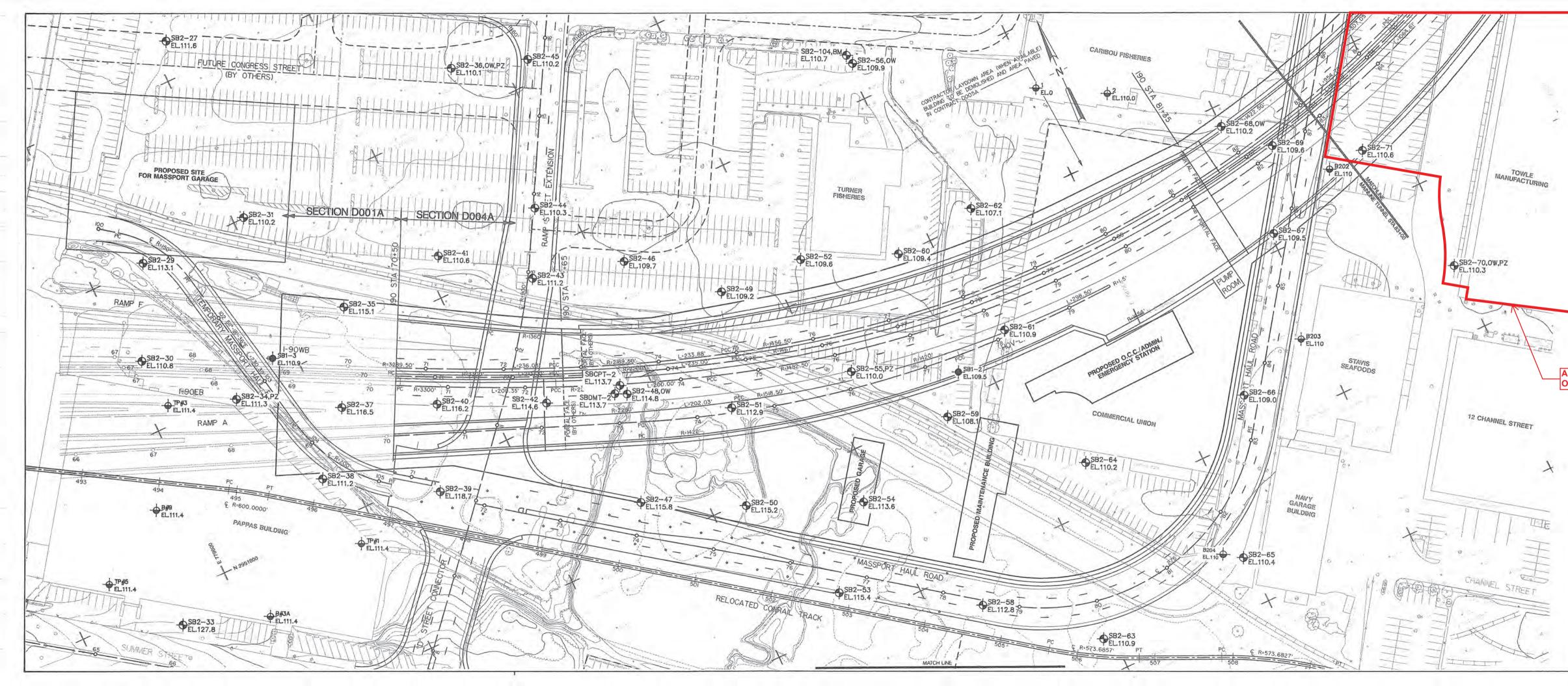
440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

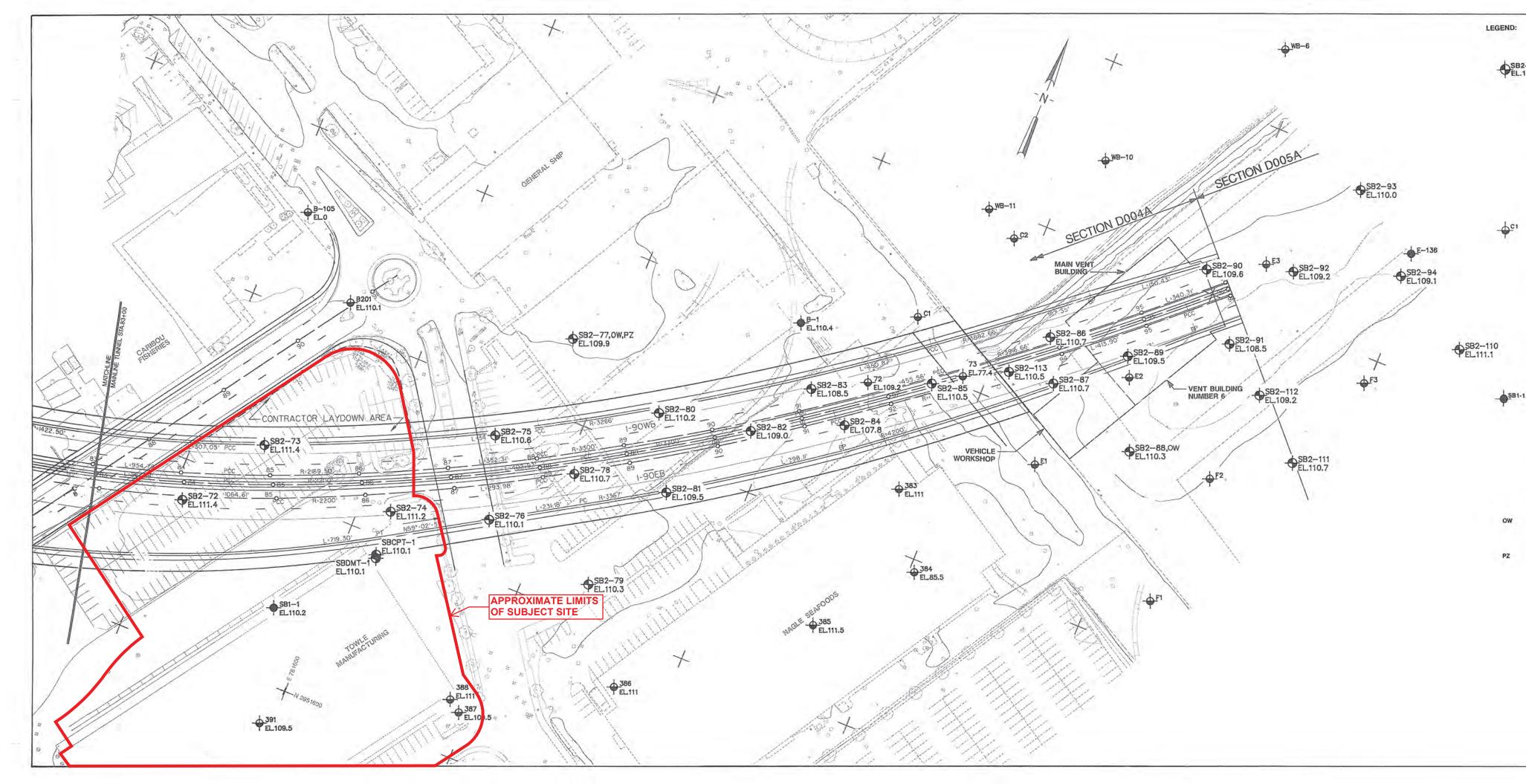

NAME: BOSTON MAP YEAR: 1903 SERIES: 15 SCALE: 1:62500
--


TARGET QUAD CLIENT: ATC Associates Inc. #60 SITE NAME: Boston Seaport Ν NAME: BOSTON AND VICINITY ADDRESS: One Design Center Place CONTACT: Chris Amorelli MAP YEAR: 1903 INQUIRY#: 3327065.4 Boston, MA 02210 42.3443 / -71.0334 RESEARCH DATE: 05/21/2012 LAT/LONG: SERIES: 15 SCALE: 1:62500

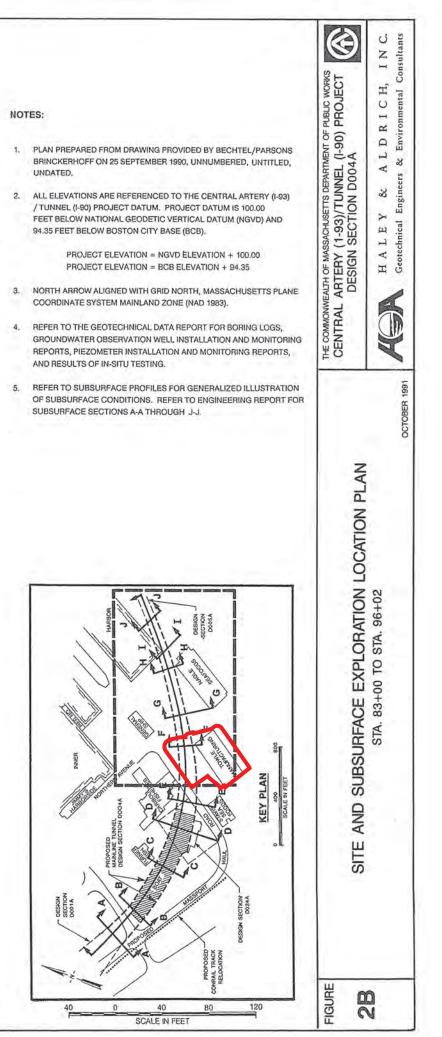

× ▲	TARGET QUADNAME:BOSTON SOUTHMAP YEAR:1946SERIES:7.5SCALE:1:25000	SITE NAME: Boston Seaport ADDRESS: One Design Center Place Boston, MA 02210 LAT/LONG: 42.3443 / -71.0334	CLIENT: ATC Associates Inc. #60 CONTACT: Chris Amorelli INQUIRY#: 3327065.4 RESEARCH DATE: 05/21/2012
--------	--	---	--

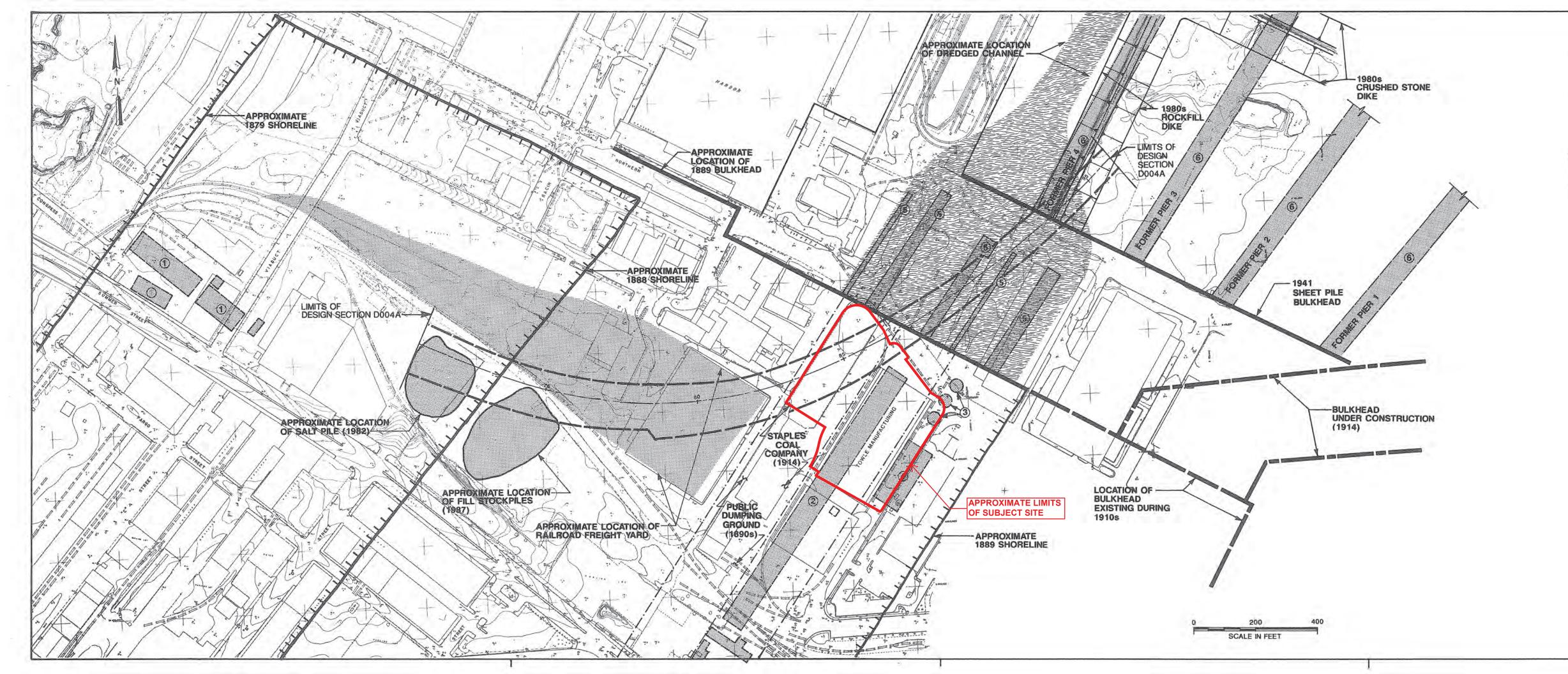

LAT/LONG: 42.3443 / -71.0334 RESEARCH DATE: 05/21/2012 SERIES: 7.5 5
--


N A	TARGET QU NAME: MAP YEAR:	BOSTON VICINITY 2 OF 4	ADDRESS:	Boston Seaport One Design Center Place Boston, MA 02210 42.3443 / -71.0334	CLIENT: CONTACT: INQUIRY#: RESEARCH	ATC Associates Inc. #60 Chris Amorelli 3327065.4 DATE: 05/21/2012
	SERIES: SCALE:	7.5 1:24000				


N A	TARGET QU NAME: MAP YEAR: SERIES:	BOSTON SOUTH 1970 7.5	ADDRESS:	Boston Seaport One Design Center Place Boston, MA 02210 42.3443 / -71.0334	CLIENT: CONTACT: INQUIRY#: RESEARCH	ATC Associates Inc. #60 Chris Amorelli 3327065.4 DATE: 05/21/2012
	SCALE:	1:24000				

N NAME: BOSTON SOUTH ADDRESS: One Design Center Place CONTACT: Chris Amorelli MAP YEAR: 1979 Boston, MA 02210 INQUIRY#: 3327065.4 PHOTOREVISED FROM :1970 LAT/LONG: 42.3443 / -71.0334 RESEARCH DATE: 05/21/2012 SERIES: 7.5 SCALE: 1:25000 Image: Control of the second	Inc. #60 2
---	---------------


LEGEND:	³ SUBS JRFACE EX (I-93) TUNNEL (I-93) TUNNEL (I-93) HALLY & ALDRICH	(PLORATION CONDUC 90) PROJECT UNDER H, INC. LOCATIONS A	TION AND DESIGNATION OF TED FOR THE CENTRAL ARTERY THE OBSERVATION OF IND ELEVATIONS FOR THESE	NÕTES:	(I-93)/TUNNEL (I-90) PROJECT	ALDRICH INC
-\$ ^{B203}	EXPLORATION SE EXPLORATION SERIES SB2 D SBCPT-2 SBDMT-2 LOCATION AND DI OTHERS FOR PRO (I-93) / TUNNEL (I-	DATES DATES IEC '89-MAR '90 JUN '90 JUN '90 ESIGNATION OF TEST DIECTS OTHER THAN 90) PROJECT. LOCAT	ANT ASSOCIATES, INC. CONTRACTOR GZA DRILLING CO., INC. (TEST BORINGS) APPLIED RESEARCH ASSOC. (CONE PENETROMETER TESTING) APPLIED RESEARCH ASSOC. (DILATOMETER TESTING) BORING CONDUCTED BY THE CENTRAL ARTERY	 PLAN PREPARED FROM DRAWING PROVIDED BY BECHTEL/PARSONS BRINCKERHOFF ON 25 SEPTEMBER 1990, UNNUMBERED, UNTITLED, UNDATED. ALL ELEVATIONS ARE REFERENCED TO THE CENTRAL ARTERY (I-93) / TUNNEL (I-90) PROJECT DATUM. PROJECT DATUM IS 100.00 FEET BELOW NATIONAL GEODETIC VERTICAL DATUM (NGVD) AND 94.35 FEET BELOW BOSTON CITY BASE (BCB). PROJECT ELEVATION = NGVD ELEVATION + 100.00 PROJECT ELEVATION = BCB ELEVATION + 94.35 NORTH ARROW ALIGNED WITH GRID NORTH, MASSACHUSETTS PLANE COORDINATE SYSTEM MAINLAND ZONE (NAD 1983). REFER TO THE GEOTECHNICAL DATA REPORT FOR BORING LOGS, GROUNDWATER OBSERVATION WELL INSTALLATION AND MONITORING REPORTS, PIEZOMETER INSTALLATION AND MONITORING REPORTS, AND RESULTS OF IN-SITU TESTING. REFER TO SUBSURFACE PROFILES FOR GENERALIZED ILLUSTRATION OF SUBSURFACE CONDITIONS. REFER TO ENGINEERING REPORT FOR SUBSURFACE SECTIONS A-A THROUGH J-J 	THE COMMINIMENTH OF MA CENTRAL ARTERY DESIGN	A H
W SB1-1 SIMATE LIMITS JECT SITE OW PZ BM	OTHERS IN CONNI (I-93) / TUNNEL (I- ELEVATIONS AND BECHTEL/PARSON TEST BORING SERIES SB1 INDICATES OBSER BORING OR SUPPL INDICATES PIEZON	ECTION WITH PRELIM 90) INVESTIGATIONS. LOGS FOR THESE BO NS BRINCKERHOFF. DATES DRILLED DEC 1988 RVATION WELL INSTAL LEMENTAL BOREHOLI METER INSTALLED IN	DRILLING CONTRACTOR GUILD DRILLING CO.	E E RAKEL E E RAKEL E E RAKEL E E RAKEL E E RAKEL E E RAKEL E E RAKEL A RAMEL A RAMEL		SILE AND SUBSURFACE EXPLORATION LOCATION PLAN STA. 70+50 TO STA. 83+00
A A A		SB2-57,0W		Weaton Hourse Ho	FIGURE	2A SILE AL



74 11.3	SUBSURFACE I (I-93)/TUNNEL	EXPLORATION CONDUC (I-90) PROJECT UNDER	ATION AND DESIGNATION OF CTED FOR THE CENTRAL ARTERY I THE OBSERVATION OF AND ELEVATIONS FOR THESE	
	EXPLORATIONS	S DETERMINED BY BRY	ANT ASSOCIATES, INC.	
	EXPLORATION SERIES	DATES	CONTRACTOR	
	SB2	DEC '89-MAR '90	GZA DRILLING ÇO., INC. (TEST BORINGS)	
	SBCPT-2	JUN '90	APPLIED RESEARCH ASSOC. (CONE PENETROMETER TESTING)	
	SBDMT-2	JUN '90	APPLIED RESEARCH ASSOC, (DILATOMETER TESTING)	
	OTHERS FOR P (I-93) / TUNNEL	ROJECTS OTHER THAN . (I-90) PROJECT. LOCA THESE BORINGS PROV	T BORING CONDUCTED BY I THE CENTRAL ARTERY ITIONS, ELEVATIONS VIDED BY BECHTEL/PARSONS	
	TEST BORING SERIES	DATES DRILLED	DRILLING CONTRACTOR	
	E3 F2 8-105	OCT-DEC 1969 OCT-DEC 1969 NOV 1982	GUILD DRILLING CO. GUILD DRILLING CO. GUILD DRILLING CO.	
	1 B203 391	1964 MAY 1984 1951	CARR-DEE CO.	
	C1 WB-10	OCT-DEC 1969 SEP-OCT 1979	GUILD DRILLING CO. BAY STATE TEST BORING, INC.	
	OTHERS IN COM (1-93) / TUNNEL ELEVATIONS AM	Construction of the providence		
	TEST BORING SERIES	DATES DRILLED	DRILLING CONTRACTOR	
	SB1 E	DEC 1988 MAY 1988	GUILD DRILLING CO. CORTELL ASSOCIATES	
	B-1	JAN 1987	GUILD DRILLING CO.	

OW INDICATES OBSERVATION WELL INSTALLED IN COMPLETED BORING OR SUPPLEMENTAL BOREHOLE ADJACENT TO BORING.

PZ INDICATES PIEZOMETER INSTALLED IN COMPLETED BORING.

LEGEND:

APPROXIMATE LOCATION OF PREVIOUSLY EXISTING STRUCTURE. (1) WALWORTH CORPORATION BUILDINGS (1890s) (2) METROPOLITAN COAL CO. COAL SHED (1890s) (3) BOSTON MOLASSES CO. TANKS (1910s)

- (4) BOSTON MOLASSES CO. COOPER SHOP (1910s)
- (5) TIMBER PIERS (1890s 1941)
- (3) TIMBER FIERS (18905 1941
- (6) TIMBER PIERS (1941 1982)

RAILROAD FREIGHT YARD - MANY TRACKS IN AREA

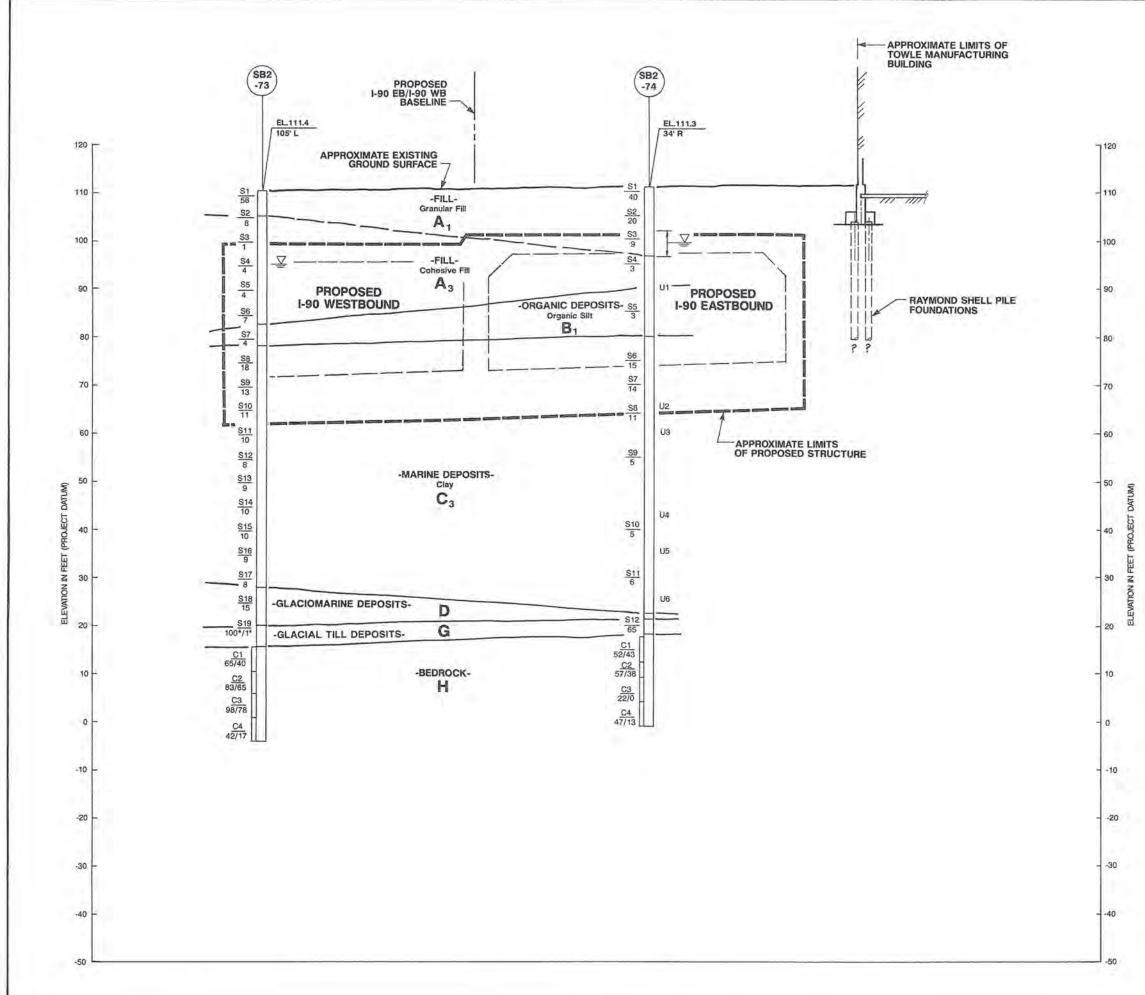
APPROXIMATE LOCATION OF FORMER DREDGED CHANNEL

APPROXIMATE LOCATION OF SALT PILES (1982)

APPROXIMATE LOCATION OF FILL STOCKPILES (1987)

NOTES:

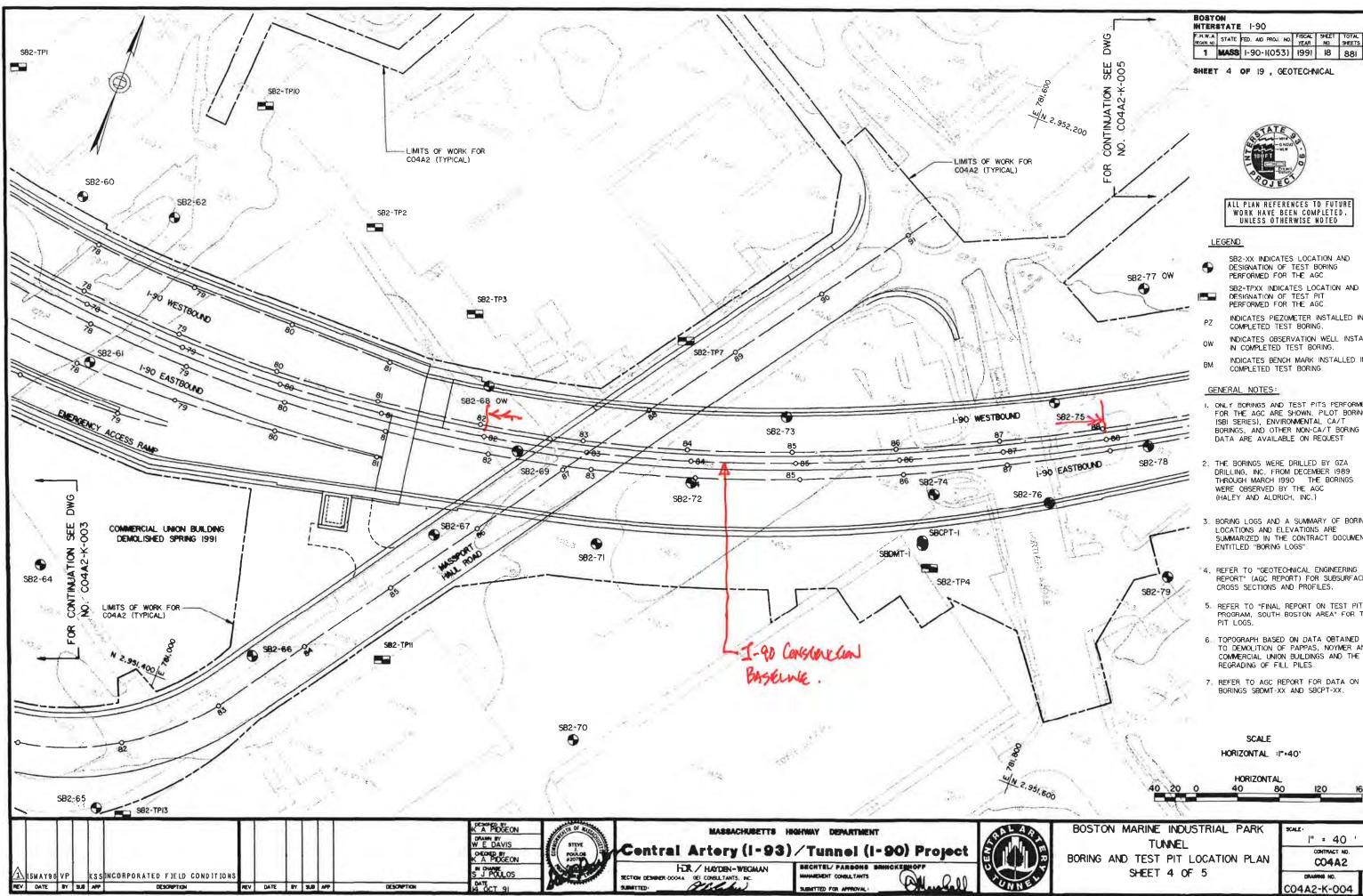
1. HISTORICAL SITE FEATURES DEPICTED REPRESENT SELECTED INFORMATION OBTAINED FROM THE REFERENCED PLANS AND DO NOT REPRESENT ALL PAST SITE DEVELOPMENT. LOCATIONS SHOWN WERE ESTIMATED BY SCALING FROM HISTORICAL PLANS, AND SHOULD BE CONSIDERED VERY APPROXIMATE. an


JEL (1-8

AB

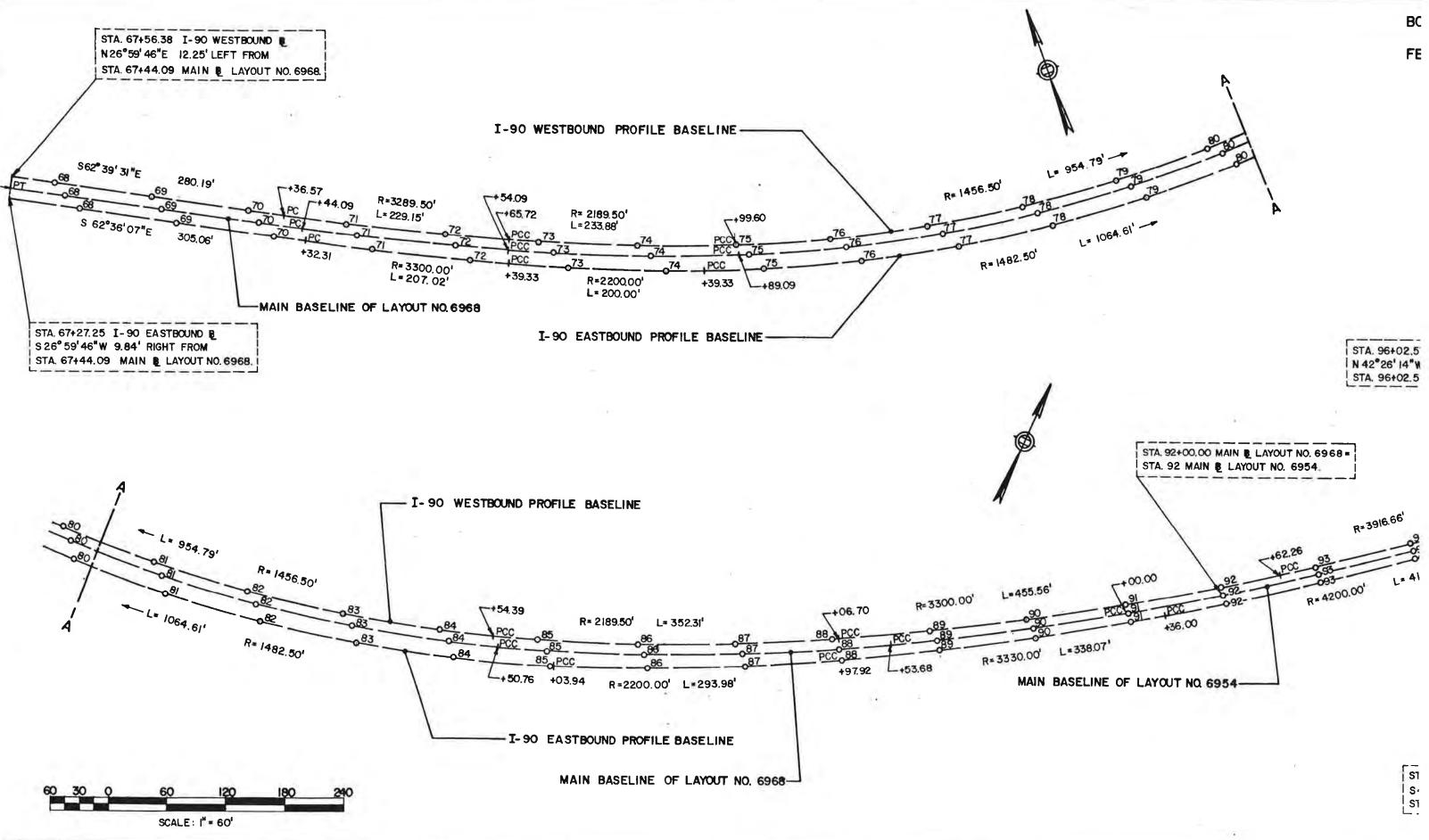
H A L E Y 8

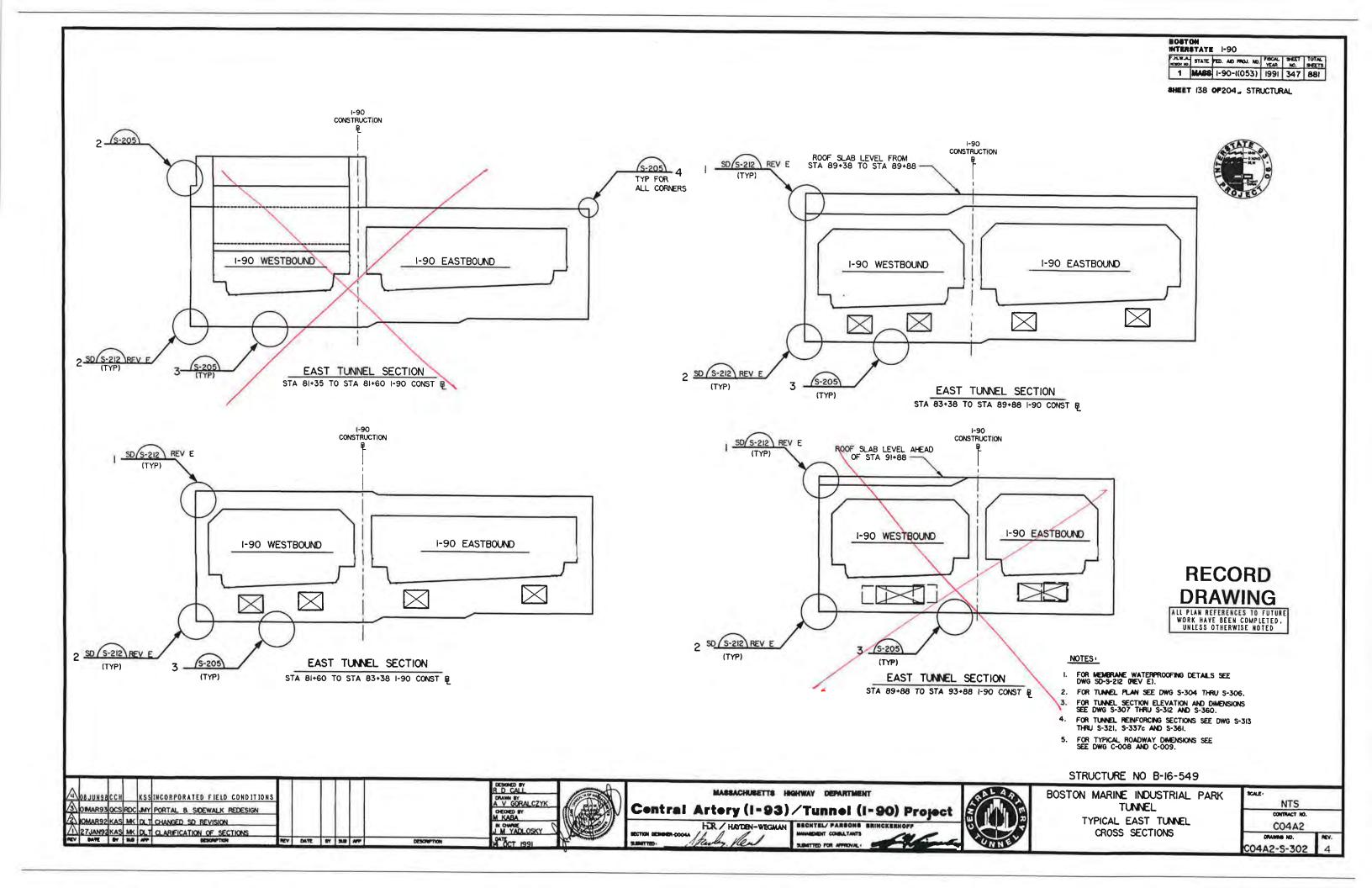
3

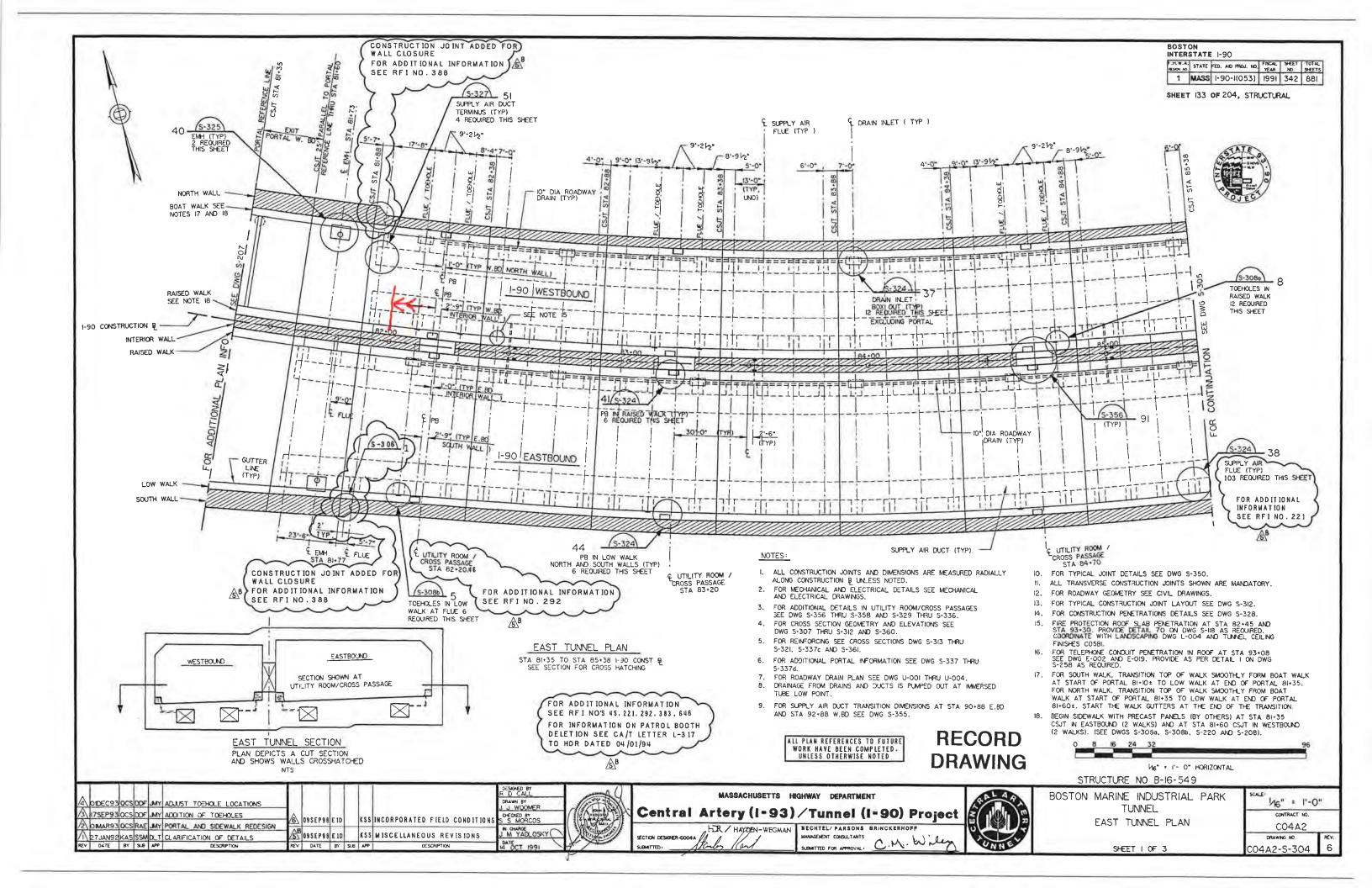

- 2. LOCATIONS OF PREVIOUSLY EXISTING BUILDINGS OBTAINED FROM:
- MAPS OF SOUTH BOSTON PREPARED BY BROMLEY, DATED 1899, APPROXIMATE ORIGINAL SCALE: 1 IN. = 150 FT.
- (B) MAPS OF SOUTH BOSTON PREPARED BY THE SANDBORN MAP COMPANY, DATED 1899 AND 1923.
- (C) LOCATION PLAN THE NAVY DEPARTMENT, BUREAU OF YARDS & DOCKS, ENTITLED 'NAVAL DRY DOCK NO.-4, SOUTH BOSTON," DATED 5 NOVEMBER 1941, ORIGINAL SCALE: 1 IN. ≠ 100 FT.
- LOCATIONS OF PIERS AND BULKHEADS EXISTING AND UNDER CONSTRUCTION DURING 1914 OBTAINED FROM PLAN PREPARED BY COMMONWEALTH OF MASSACHUSETTS, DIRECTORS OF THE PORT OF BOSTON, ENTITLED 'SOUTH BOSTON FLATS, PRESENT CONDITION AND IMPROVEMENTS UNDER CONSTRUCTION," DATED 1 JANUARY 1914, ORIGINAL SCALE: 1 IN. = 400 FT.
- LOCATIONS OF N.Y.N.H. & H.R.R. FREIGHT TERMINAL TRACKS OBTAINED FROM PLAN PREPARED BY U.S. COAST AND GEODETIC SURVEY, ENTITLED "BOSTON HARBOR, MASSACHUSETTS, CHART 246, 1:20,000," DATED 1932.
- LOCATION OF ROCK DIKE, AND PIERS 3 AND 4, IN MASSPORT MARINE TERMINAL OBTAINED FROM PLANS ENTITLED, "MASSPORT MARINE TERMINAL - PHASE II, DIKE PLAN," PREPARED BY CE MAGUIRE, INC., MPA CONTRACT 3.111 C/P.813, DWGS NOS. 1 AND 2 OF 2, UNDATED.
- B. LOCATION OF APPROXIMATE 1879 SHORELINE OBTAINED FROM PLAN ENTITLED "MAP OF BOSTON, 1879," PREPARED BY SAMPSON, DAVENPORT & COMPANY, AS PUBLISHED IN THE REPORT BY PEABODY MUSEUM, HARVARD UNIVERSITY, INSTITUTE FOR CONSERVATION ARCHAEOLOGY, ENTITLED "ARCHAEOLOGICAL SURVEY OF THE THIRD HARBOR TUNNEL CROSSING, BOSTON, MASSACHUSETTS," DATED 1982.
- LOCATION OF APPROXIMATE 1888 SHORELINE OBTAINED FROM PLAN PREPARED BY MASSACHUSETTS BOARD OF HARBOR AND LAND COMMISSIONERS, DATED 1886.
- LOCATION OF APPROXIMATE 1889 SHORELINE OBTAINED FROM PLAN PREPARED BY MASSACHUSETTS BOARD OF HARBOR AND LAND COMMISSIONERS, DATED 1896.
- APPROXIMATE LOCATION OF 1982 SALT PILE OBTAINED FROM AERIAL PHOTOGRAPH OF SOUTH BOSTON, DATED DECEMBER 1982.
- 10 APPROXIMATE LOCATION OF 1987 FILL STOCKPILES OBTAINED FROM AERIAL PHOTOGRAPH OF SOUTH BOSTON, DATED 21 DECEMBER 1997

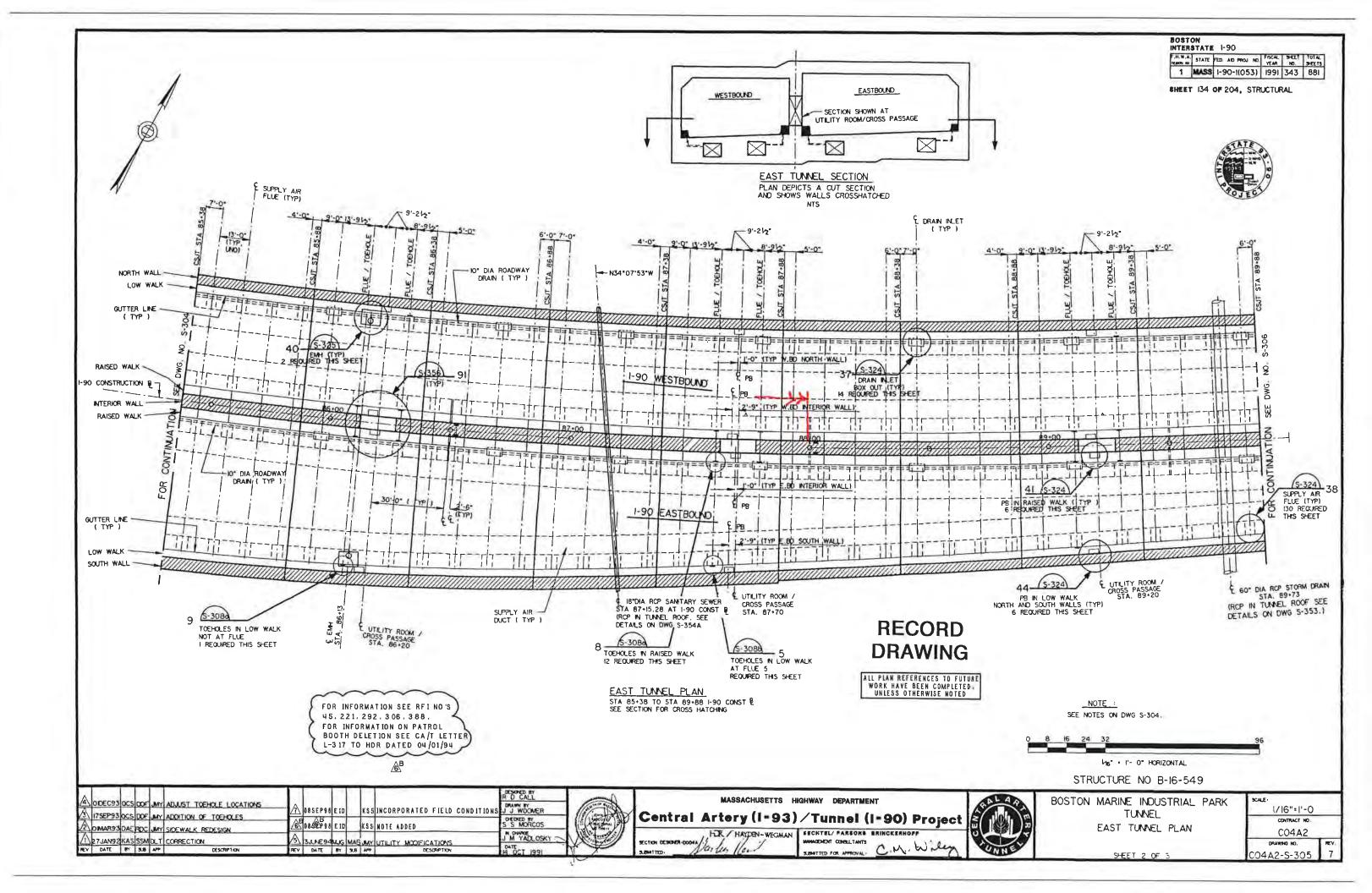
FILL A GRANULAR FILL A1 GRANULAR FILL A3 COMESSIVE FILL A3 OPGANICSULT B1 PEAT B2 MARINE DEPOSITS C SULT C3 DAGOMACOUST B1 SULT C2 CLAY C3 SAND C1 SULT C4 CLAY C3 SAND GRANCEUL F1 LOWER UNIT D1 LOWER UNIT D2 SAND GRANCEUST F1 SAND GRANCEUST F3 SAND GRANCEUST F1 SAND GRANCEUST F3 SAND GRANCEUST G3 SAND GRANCEUST G3 SAND GRANCEUST G3 SECTON DOCK W MITERPOLATION EDERDEGRAND ALCHANGE GRANCE AND ATTONE CONSTRUCTION EDENTS C INTERPOLATION EDENTERINE CANDE AND SECTION CONS	GEOLOGIC LEGEND : GEOLOGIC DESCRIPTION	LETTER CODE		Ì	DRICH, INC.
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI	Contraction of the second s	All Party and		19 L	11
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI				No.	
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 SEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS FOR DETAILS FOR DETAILS GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIMPORT WHEN HER INTERPOLATION BETWEEN BORINGS NOT TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETAILS GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIMPORT WHEN HER INTERPOLATION BETWEEN BORINGS NOT TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETAILS GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIMPORT WHEN HER INTERPOLATION BETWEEN BORINGS NOT HIMPORT WHEN HER INTERPOLATION BETWEEN BORINGS NOT TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETAILS GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIMPORT WHEN HER INTERPOLATION BETWEEN BORINGS NOT HIMPORT WHEN HER INTERPOLATION BETWEEN BORINGS NOT TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETAILS GRADATIONAL CHANGE WITHIN HER SAME STRATUM HIMPORT WHEN HER INTERPOLATION BETWEEN BORINGS NOT HIMPORT WHEN HE				N H	H,
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 LODGEMENT TILL G2 LODGEMENT TILL G3 BEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C T NITERPOLATION BETWEEN BORINGS. C T NITERPOLATION BETWEEN BORINGS. C T NITERPOLATION BETWEEN BORINGS. C T SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TOT DETALLS C T NITERPOLATION GENERAL LEGENDS AND NOTES C STRATUMENT OF COMPANY OF COM				DBLIC	C
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI	ORGANIC DEPOSITS	в		OF P	и.
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI		Bi		N-1 A	Ω,
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI	PEAT	B ₂		EL (1
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI				DO	100
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI				20-	8
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI				E S	
SAND & GRAVEL F1 SLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 REDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C GRADATIONAL CHANGE WITHIN THE SAME STRATUM POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALS C GRADATIONAL CHANGE WITHIN THE SAME STRATUM HIGH WITH WITH WITH THE SAME STRATUM HIGH WITH WITH OUT ON HIGH WEIGHT OF THE SAME STRATUM HIGH WITH WITH ON HIGH WEIGHT OF THE SAME STRATUM THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALS C GRADATION WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH ON HIGHT WEIGHT OF THE SAME STRATUM HIGHT WITH WITH WITH WITH WITH WITH WITH WI	CLAI	C3		CT CT	E.
SAND & GRAVEL F1 BLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 MEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPACE BETWEEN STRATA BASED ON INTERPACE DETIMENTATA CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES TO DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES C - C INTERPOLATION GENERAL C - C INTERONO C - C INTEROP				ASSA V (Ι SE	4
SAND & GRAVEL F1 BLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 MEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPACE BETWEEN STRATA BASED ON INTERPACE DETIMENTATA CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES TO DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES C - C INTERPOLATION GENERAL C - C INTERONO C - C INTEROP				CON ER	VI
SAND & GRAVEL F1 BLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 MEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPACE BETWEEN STRATA BASED ON INTERPACE DETIMENTATA CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES TO DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES C - C INTERPOLATION GENERAL C - C INTERONO C - C INTEROP				LAT NAT	да (
SAND & GRAVEL F1 BLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 MEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPACE BETWEEN STRATA BASED ON INTERPACE DETIMENTATA CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES TO DETAILS C - C INTERPOLATION GENERAL LEGENDS AND NOTES C - C INTERPOLATION GENERAL C - C INTERONO C - C INTEROP	Constraints and the statement of a second second second			DI	1
SAND & GRAVEL F1 BLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 DEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INFERRACE BETWEEN STRATA BASED ON INTERPACE TRATA CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INFERRED STRATA CHANGE ON GRADATIONAL CHANGE POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS C - O INTERPOLATION GENERAL LEGENDS AND NOTES TO DETAILS C - O INTERPOLATION GENERAL LEGENDS AND NOTES C - O INTERPOLATION GENERAL C - O INTERONO C - O INTERPOLATION GENERAL C - O	(e) 0 / ep			MIN	E
SAND & GRAVEL F1 BLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 DEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INFERRACE BETWEEN STRATA BASED ON INTERPACE TRATA CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INFERRED STRATA CHANGE ON GRADATIONAL CHANGE POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS C - O INTERPOLATION GENERAL LEGENDS AND NOTES TO DETAILS C - O INTERPOLATION GENERAL LEGENDS AND NOTES C - O INTERPOLATION GENERAL C - O INTERONO C - O INTERPOLATION GENERAL C - O				TTR	
SAND & GRAVEL F1 BLACIAL TILL DEPOSITS G FLOW TILL G2 ABLATION TILL G2 LODGEMENT TILL G3 DEDROCK H GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INFERRACE BETWEEN STRATA BASED ON INTERPACE TRATA CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS. C - C INFERRED STRATA CHANGE ON GRADATIONAL CHANGE POSSIBLE DUE TO LIMITED INFORMATION. TE: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS C - O INTERPOLATION GENERAL LEGENDS AND NOTES TO DETAILS C - O INTERPOLATION GENERAL LEGENDS AND NOTES C - O INTERPOLATION GENERAL C - O INTERONO C - O INTERPOLATION GENERAL C - O				8 E N	2
PLOW TILL ABLATION TILL G1 ABLATION TILL G2 LODGEMENT TILL G3 PEDROCK H MTERFACE BETWEEN STRATA BASED ON INTERFACE STRATA CHANGE ON BOTON INTERFACE STRATA CHANGE ON BOTON INTERFACE AND SECTION GENERAL LEGENDS AND NOTES INTERFACE MADE SECTION GENERAL LEGENDS	C. M. M. Martine Collection Theorem in			ž S	P
PLOW TILL ABLATION TILL G1 ABLATION TILL G2 LODGEMENT TILL G3 PEDROCK H MTERFACE BETWEEN STRATA BASED ON INTERFACE STRATA CHANGE ON BOTON INTERFACE STRATA CHANGE ON BOTON INTERFACE AND SECTION GENERAL LEGENDS AND NOTES INTERFACE MADE SECTION GENERAL LEGENDS	LACIAL TILL DEPOSITE	C			
ABLATION TILL LODGEMENT TILL G2 G2 G2 HEDROCK H MITERFACE DETWEEN STRATA BASED ON INTERFACE DETWEEN STRATA BASED ON INTERFACE DETWEEN STRATA BASED ON INTERPOLATION BETWEEN BORINGS. GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES FOR DETALLS GUIDENCE ON THE SAME OF THE SAME STRATA CHANGE OF GRADATIONAL CHANGE THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALLS GUIDENCE OF THE SAME OF THE SAME STRATA CHANGE OF GRADATIONAL CHANGE THE SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TO DETALLS GUIDENCE OF THE SAME OF THE SAME STRATA CHANGE OF THE SAME OF THE					
LODGEMENT TILL 63 NEDROCK H NITERPOLATION BETWEEN STRATA BASED ON NITERPOLATION BETWEEN BORINGS. GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. THE REPORTED AND SECTION GENERAL LEGENDS AND NOTES FOR DETAILS TO USE THE ADDRESS OF THE SAME ORIGINAL CHANGE THE SEEP POLICE AND SECTION GENERAL LEGENDS AND NOTES TO USE THE SECTION GENERAL AND NOTES TO USE THE SECTION GENERAL AND NOTES TO USE THE SECTION GENERAL AND NOTES TO USE THE SECTION				1	
PEDROCK H Interprote BETWEEN STRATA BASED ON INTERPOLATION BETWEEN BORINGS. Interpolation between borings.					
Interprete Between strata based on Based on Interprotation Between Borings. Image: Strata change of Bradational Change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata change of Bradational Change Dossible Due to Limited INFORMATION. Image: Strata c	EDEOCK				
INTERPOLATION BETWEEN BORINGS. GRADATIONAL CHANGE WITHIN THE SAME STRATUM BASED ON INTERPOLATION BETWEEN BORINGS NOT POSSIBLE DUE TO LIMITED INFORMATION. FF: SEE PROFILE AND SECTION GENERAL LEGENDS AND NOTES TOR DETAILS FOR DETAILS	CONCON.	4			
STA. 86+00	BASED ON INTERI	POLATION BETWEEN BORING A CHANGE OR GRADATIONAL LATION BETWEEN BORINGS N	S. CHANGE		
Deside Service Servi	BASED ON INTERI 	POLATION BETWEEN BORING A CHANGE OR GRADATIONAL LATION BETWEEN BORINGS N D LIMITED INFORMATION.	S. . CHANGE IOT		
VERT. 10 0 10 20 30 0	BASED ON INTERIO INFERRED STRAT. WHERE INTERPOI POSSIBLE DUE TO FOR DETAILS	POLATION BETWEEN BORING A CHANGE OR GRADATIONAL LATION BETWEEN BORINGS N J LIMITED INFORMATION. GENERAL LEGENDS AND NOT	S. CHANGE IOT TES	SUBSURFACE SECTION F-F	STA. 86+00

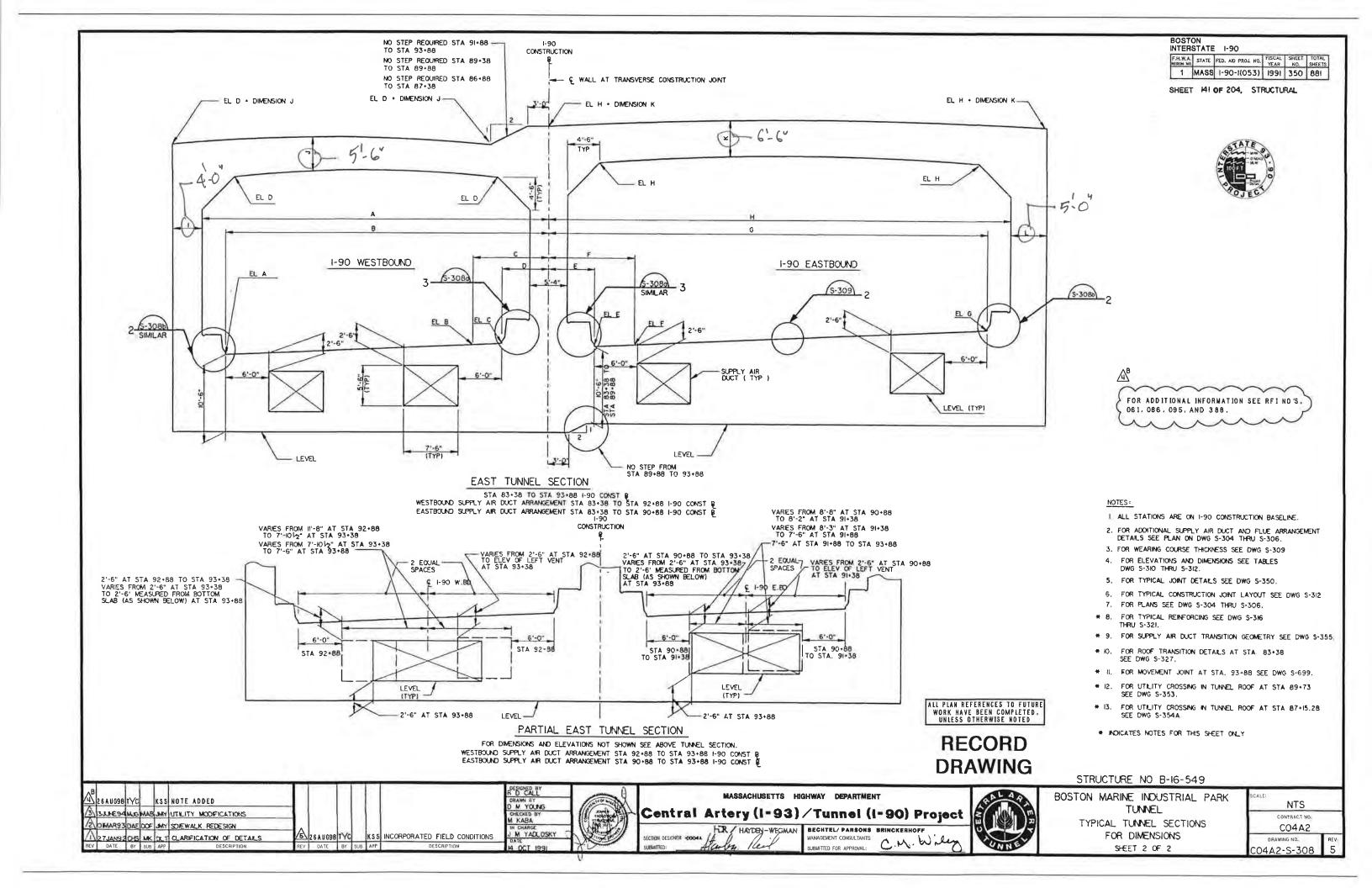
APPENDIX B


Available Drawings – On-Site Building, Central Artery / Tunnel (CA/T) and BWSC Utility


1 MASS 1-90-1(053) 1991 18 881 SHEET 4 OF 19 , GEOTECHNICAL


ALL PLAN REFERENCES TO FUTURE Work have been completed. Unless otherwise noted


- DESIGNATION OF TEST BORING PERFORMED FOR THE AGC.
- INDICATES PIEZOMETER INSTALLED IN COMPLETED TEST BORING.
- INDICATES OBSERVATION WELL INSTALLED IN COMPLETED TEST BORING.
- INDICATES BENCH MARK INSTALLED IN
- I. ONLY BORINGS AND TEST PITS PERFORMED FOR THE AGC ARE SHOWN. PILOT BORINGS (SBI SERIES), ENVIRONMENTAL CA/T BORINGS, AND OTHER NON-CA/T BORING DATA ARE AVAILABLE ON REQUEST
- 2. THE BORINGS WERE DRILLED BY GZA DRILLING, INC. FROM DECEMBER 1989 THROUGH MARCH 1990 THE BORINGS WERE OBSERVED BY THE AGC
- BORING LOGS AND A SUMMARY OF BORING LOCATIONS AND ELEVATIONS ARE SUMMARIZED IN THE CONTRACT DOCUMENT ENTITLED "BORING LOGS"
- 4. REFER TO "GEOTECHNICAL ENGINEERING REPORT" (AGC REPORT) FOR SUBSURFACE CROSS SECTIONS AND PROFILES.
- 5. REFER TO "FINAL REPORT ON TEST PIT PROGRAM, SOUTH BOSTON AREA" FOR TEST PIT LOGS.
- 6. TOPOGRAPH BASED ON DATA OBTAINED PRIO TO DEMOLITION OF PAPPAS, NOYMER AND COMMERCIAL UNION BUILDINGS AND THE
- 7. REFER TO AGC REPORT FOR DATA ON BORINGS SEDMT-XX AND SECPT-XX.



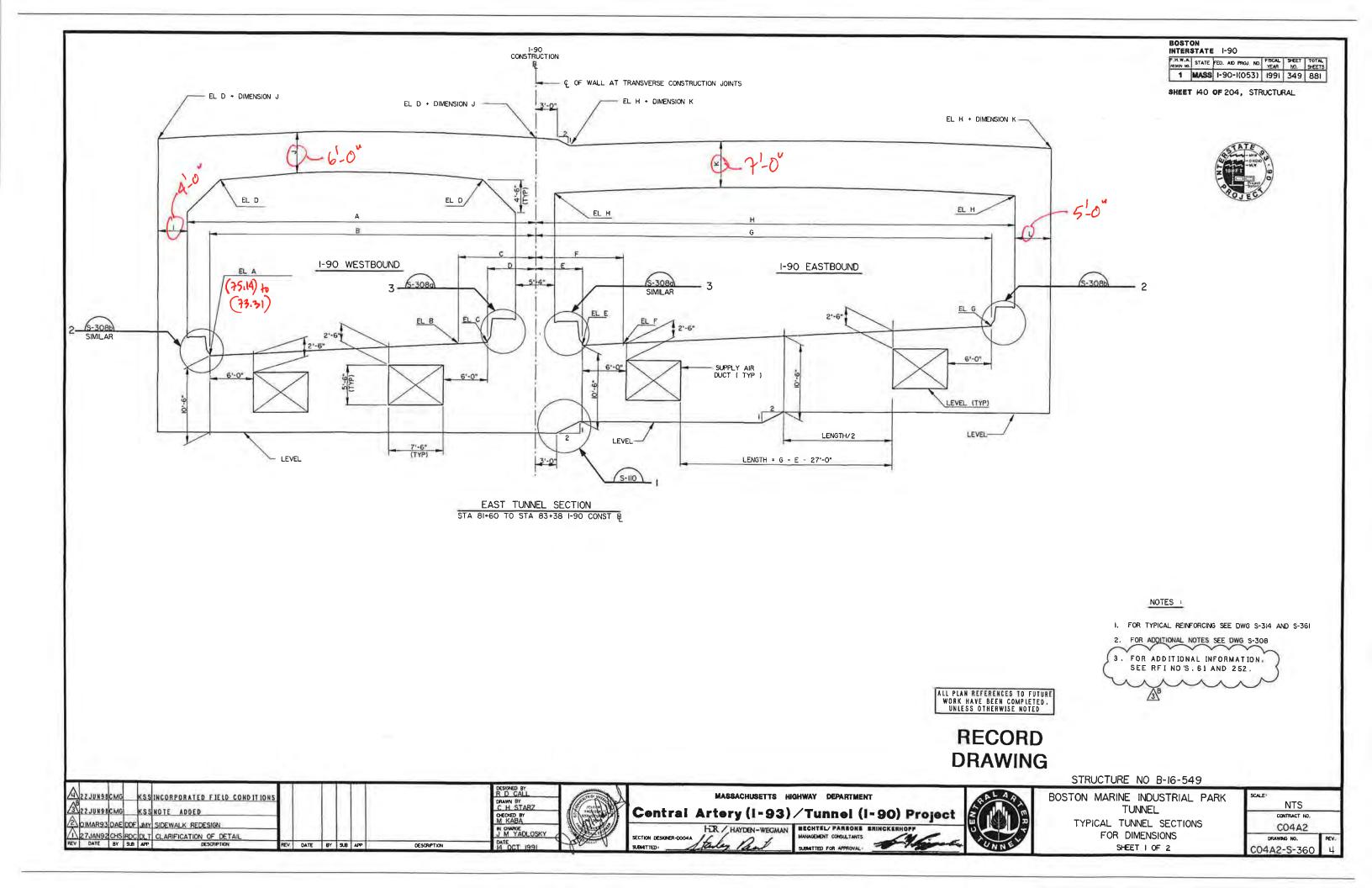
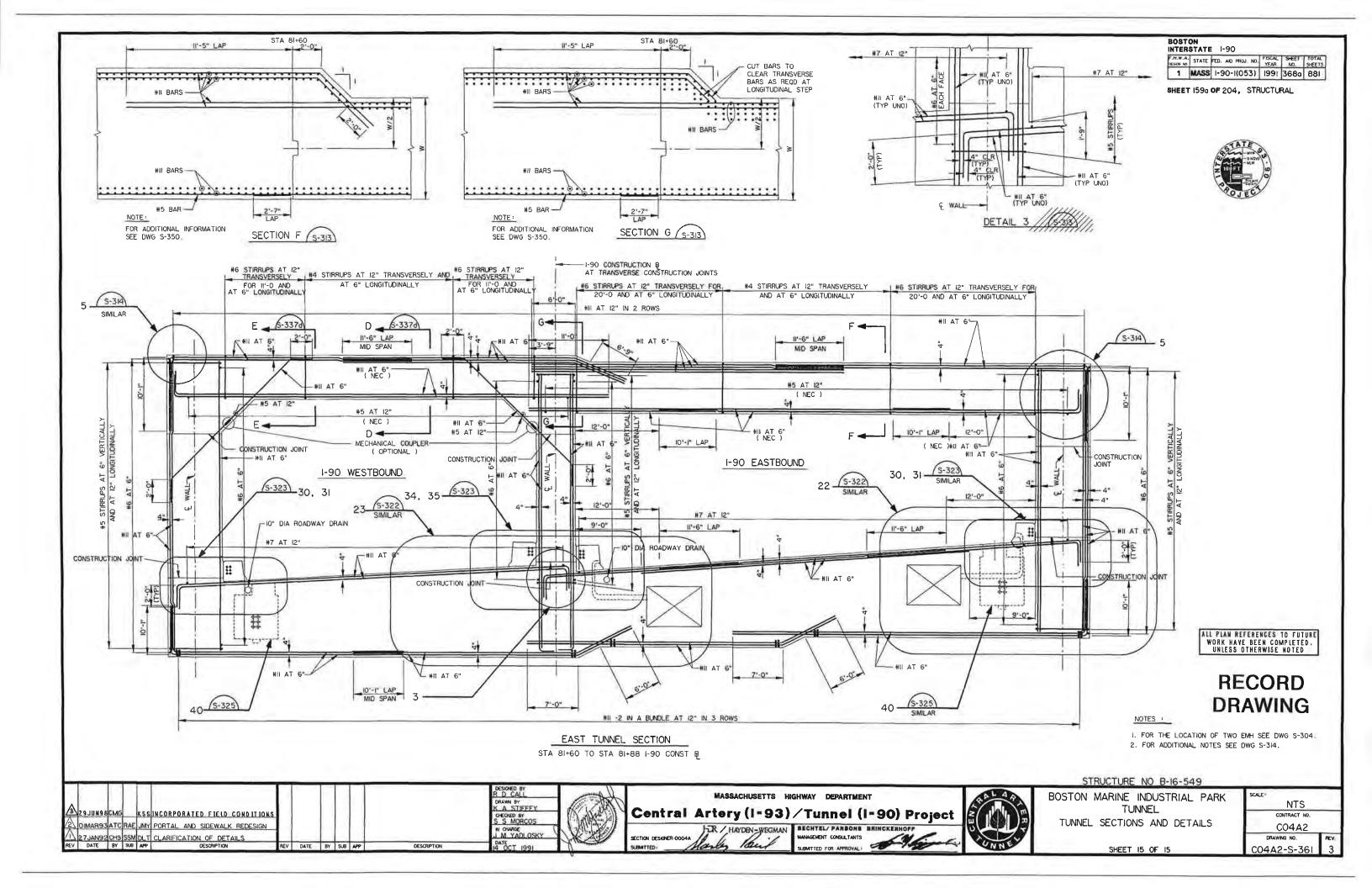
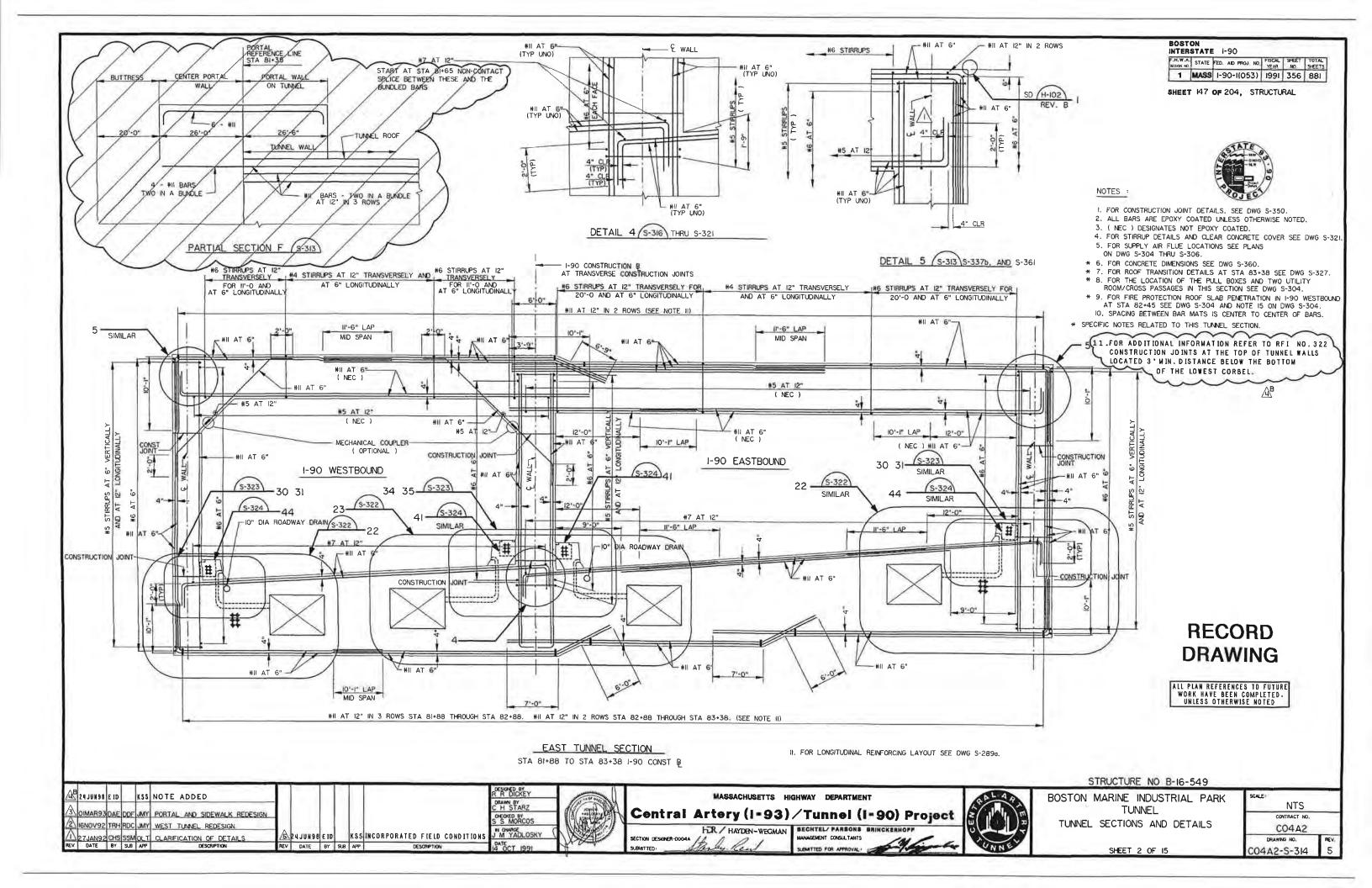
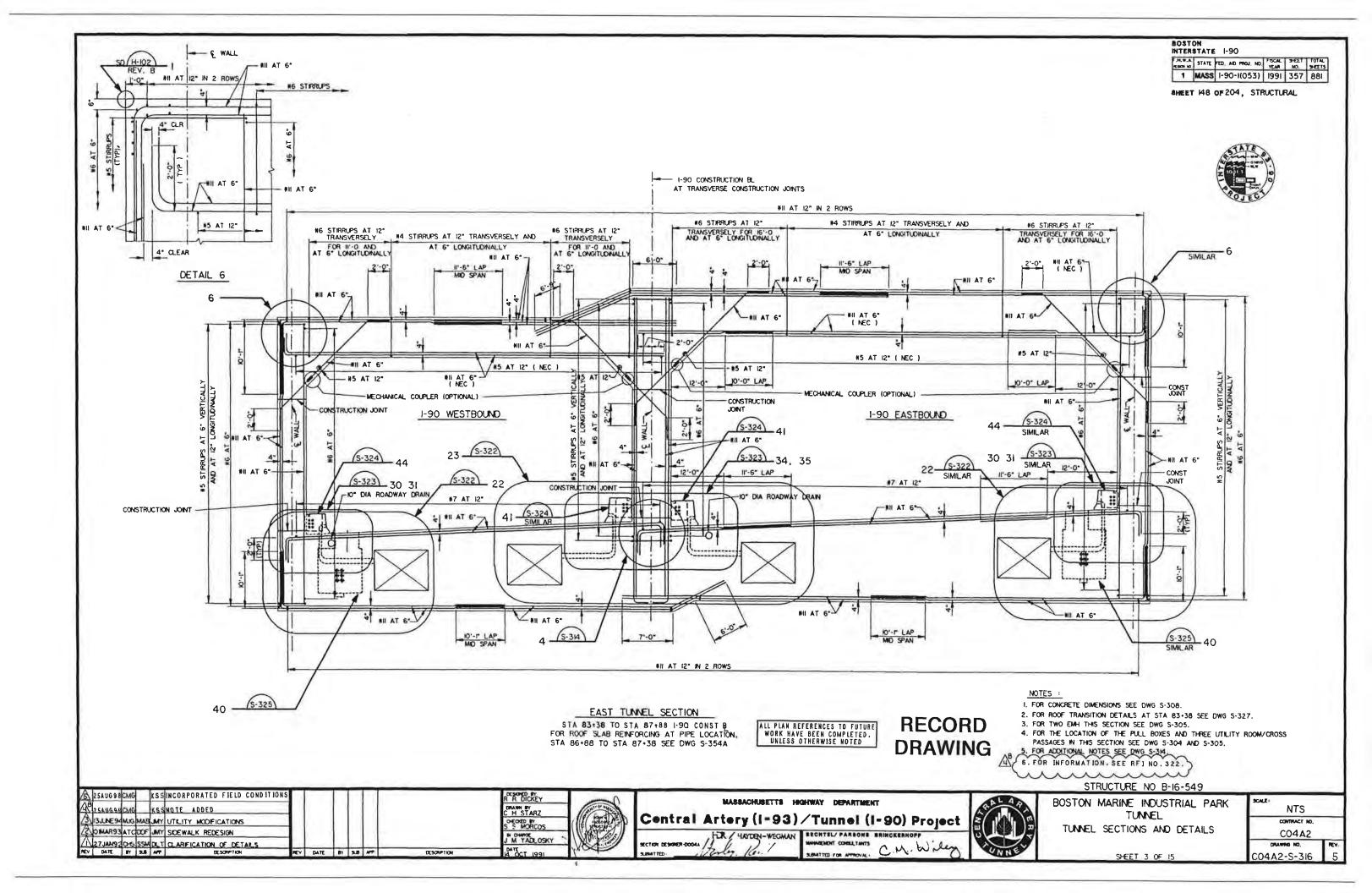
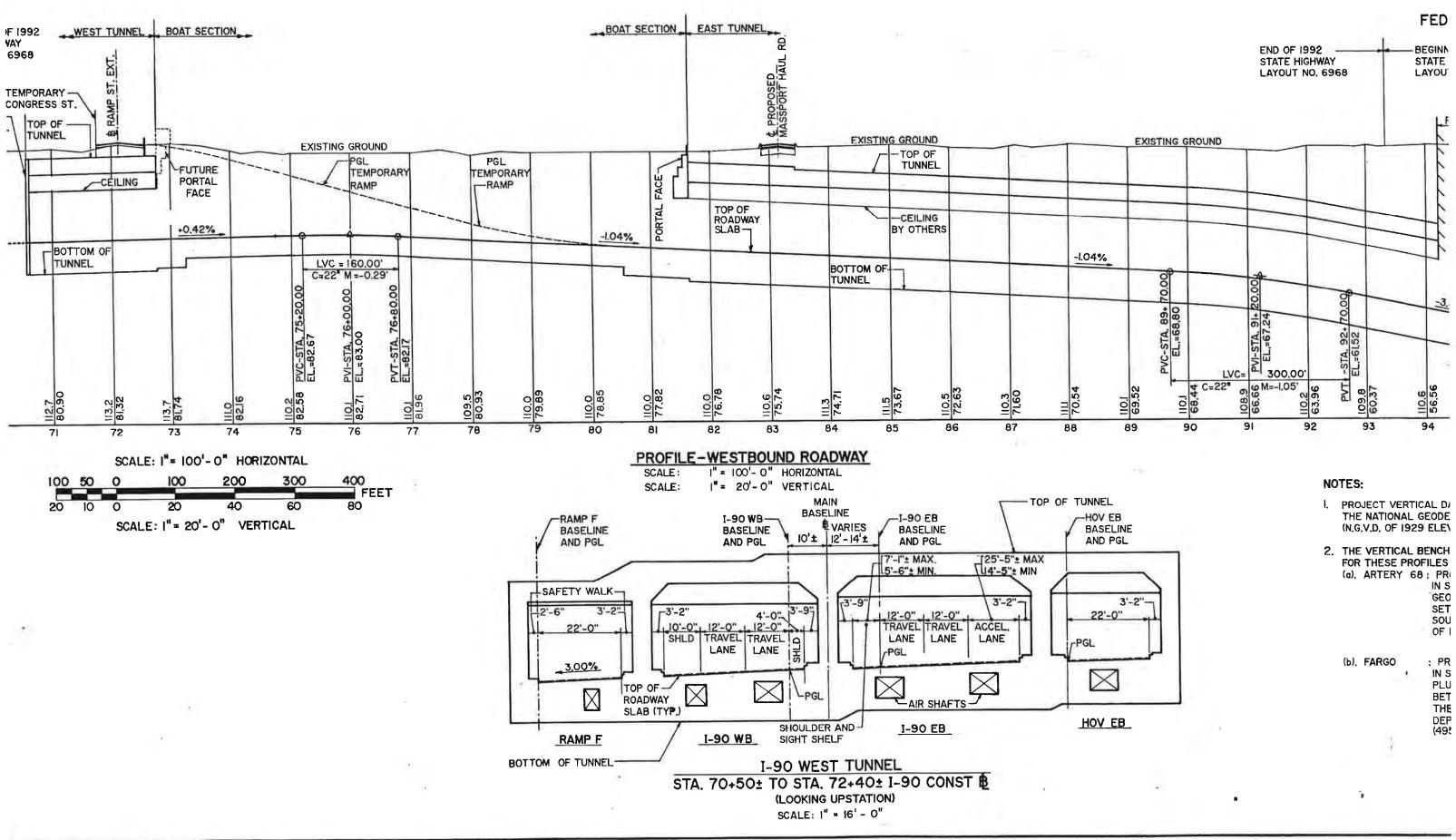

1.1

					TABLE	OF CONC	RETE ELE	VATIONS A	ND DIMENS	IONS (FT)							7				ATE I-90		SCAL SHEET TO
			EL	EVATIONS					1			DIM	INSIONS				1						SCAL SHEET TO EAR NO. SHE 991 352 88
LOCATION	ELEV. A	ELEV. B	ELEV. C	ELEV. D	ELEV. E	ELEV. F	ELEV. G	ELEV. H	A	В	С	D	E	F	G	н						4, STRUC	
STA 81+60 (AHD)	75.14	76.89	77.09	99.84	76,85	77.31	79.84	97.96	47.76	44.52	KD.51	6.50	6.50	15,50	65,41	68.67 -	SEE NOTE 4	Å₿					
STA 81+70	75,04	76.78	76,99	99.74	76.74	77.20	79.70	97.82		44,51	K0.51	6.50	6.50	15.49	64.61	00.07							
STA 81+80	74.94	76.68	76.88	99.63	76.64	77.09	79.56	97.68		44.51	10.51	6.50	6.50	15.49	63,98		1 (FOR DETAILS ON VERTICAL CONSTRUCTION JOINTS. SEE					
STA BI+88	74_86	76.60	76.80	99.55	76.55	77.01	79.45	97.57	47.76	44.50	10.51	6.51	6.50	15.50	63.53	66.78		RFI NO. 388.			AST	ALES	
STA 81+98	74.75	76.49	76,70	99.45	76.44	76,90	79.32	97.44		44.50	10.51	6.51	6.50	15.50	63.03		1	000			100	and a land)
STA 82+08	74.65	76.39	76.60	99.35	76.34	76.79	79_19	97,31		44.50	10.51	6 51	6.50	15,50	62.60		1				5	6320/9	1
STA 82+18	74 55	76.29	76.49	99.24	76.23	76.69	79.06	97_19	1	44_50	10.51	6,51	6.50	15.50	62.24						80	JECY	\sim
STA 82+28	74.44	76.19	76.39	99,14	76.12	76.58	78.94	97.06		44.50	10.51	6.51	6.50	15.50	61.95			T.0. 5 40				-6	I, J, K, L WEASURED R.
STA 82+38	74_34	76.08	76.29	99.04	76.01	76.47	78.82	96.95	47.76	44.50	Ю.51	6,51	6.50	15.50	61.73	64.98		JOINTS & CON			21		FROM CONSTI Baseline. F
STA 82+48	74.24	75,98	76,18	98.93	75.91	76.36	78.71	96.83	-	44.50	10.51	6,51	6.50	15,50	61,59			DOINTS & COI				>	ADD'L INFO.
STA 82+58	74,14	75.88	76.08	98.83	75.80	76.26	78.60	96.72	-	44.50	Ю.51	6.51	6.50	15.50	61.51		m	CONST JOINT STATIONS	1 Sha	2	K	L	RFI NO. 28
STA 82+68	74.03	75,77	75.98	98.73	75.69	76.15	78.49	96.61	-	44.50	10.51	6,51	6_50	15_50	61.50		FOR INFORMATION SEE		m	V V	vvy	m	
STA 82+78	73.93 73.83	75,67	75.88	98.63 98.52	75,59 75.48	76.04	78.38	96.51	47.75	44.50	10.51	6.51	6.50	15.50	61.49		- Million - Million	STA BI+60 TO STA BI+88	71.5	6'-0"	7'-0"	7:55	
STA 82+88	73.83	75.57	75.67	98.52	75.48	75.94	78.27	96.40	47_76	44.51	10.51	6,51	6.50	15.50	61.49	64.74	- A ^B	STA 81+88 TO STA 82+38	4'-0"	6'-0"	7'-0"	5'-0"	
STA 83+08	73.62	75.36	75.57	98.32	75.26	75.72	78.06	96.29	-	44.51	10.51	6.51	6.50	15,49	61.49			STA 82+38 TO STA 82+88 STA 82+88 TO STA 83+38	4'-0"	6'-0" 6'-0"	7'-0"	5'-0"	
STA 83+18	73.52	75.26	75.46	98.21	75.16	75.61	77,95	96.08	-	44,51	10.51	6.51	6.50	15.49	61.50	-		STA 83+38 TO STA 83+88	4'-0"	5'-6"	6'-6"	5'-0"	7
STA 83+28	73.41	75.16	75.36	98.1	75.05	75.51	77_84	95.97	-	44.5	10.51	6.5	6,50	15.49	61.50		- N	STA 83+88 TO STA 84+38	4'-0"	5'-6"	6'-6"	5'-0"	
STA 83+38	73.31	75.05	75.26	98.01	74.94	75.40	77.74	95.86	47.75	44.51	10.51	6.51	6.50	15.49	61.50	64.75	-	STA 84+38 TO STA 84+88	4'-0"	5'-6"	6'-6"	5'-0"	10
STA 83+38	73.31	75.05	75.26	98.01	74.94	75.40	77.74	100.36	47.75	44.51	10.51	6.51	6.50	15.49	61.50	64.75	-	STA 84+88 TO STA 85+38	4'-0"	5'-6"	6'-6"	5'-0"	
STA 83+48	73.21	74.95	75.15	97.90	74.84	75.29	77.63	100.26		44.51	10.51	6.51	6.50	15.49	61.50	01110		STA 85+38 TO STA 85+88 STA 85+88 TO STA 86+38	4*-0* 4*-0*	5'-6"	6'-6"	5'-0"	
STA 83+58	73.11	74,85	75.05	97.80	74.73	75.19	77.52	100.15		44.51	KO.51	6.51	6.50	15.49	61.50		4 1	STA 86+38 TO STA 86+88	4'-0"	5'-6'	6'-6"	5'-0"	
STA 83+68	73.00	74.74	74.95	97.70	74.62	75.08	77.42	100.04		44.51	10.51	6.51	6.50	15.49	61.50		1 6	STA 86+88 TO STA 87+38	4*-0**	8'-0"*	6'-6"	5*-0*	
STA 83+78	72.90	74.54	74.85	97.60	74.51	74.97	77.31	99.93	1	44.51	KO.51	6.51	6.50	15.49	61.50			STA 87+38 TO STA 87+88	4*-0*	5'-6"	6'-6"	5*-0"	
STA 83+88	72.80	74.54	74.74	97.49	74.41	74.87	77.20	99.83	47.75	44.51	10.51	6.51	6.50	15.49	61.50	64.75		STA 87+86 TO STA 88+38	4'-0"	5'-6"	5'-6"	4'-0"	
STA 83+98	72.69	74.43	74.64	97.39	74.30	74.76	77.09	99.72		44.51	ю.51	6.51	6.50	15.49	61,50			STA 88+38 TO STA 88+88 STA 88+88 TO STA 89+38	4'-0"	5'-6"	5'-6"	4'-0"	
STA 84+08	72.59	74.33	74.54	97.29	74.19	74.65	76.99	99.61		44.51	10.51	6.51	6_50	15.49	61.50			STA 69+38 TO STA 89+88	4'-0"	12'-3**	11"-6"	4'-0"	
STA 84+18	72.49	74.23	74.43	97.18	74.09	74.54	76.88	99.51		44.51	10.51	6.51	6.50	15.49	61.49		1	STA 89+88 TO STA 90+38	4'-0"	5'-6"	5'-6"	4'-0"	
STA 84+28	72,39	74.13	74.33	97.08	73.98	74.44	76.77	99.40		44.51	10.51	6.51	6.50	15.49	61 4 9			STA 90+38 TO STA 90+88	4'-0"	5'-6"	5'-6"	4'-0"	
STA 84+38	72.28	74.02	74.23	96.98	73.87	74.33	76.67	99.29	47.76	44.51	KD. 51	6,51	6.50	15.49	61.49	64.74		STA 90+88 TO STA 91+38 STA 91+38 TO STA 91+88	4'-0"	5'-6"	5'-6"	4*-0"	
STA 84+48	72.18	73.92	74.13	96.88	73.77	74.22	76.56	99.18		44.50	Ю.50	6.51	6.50	15.49	61,49			STA 91+88 TO STA 91+88	4'-0"	5'-6".	5.6.	4'-0"	
STA 84+58	72.12	73.82	74.02	96.77	73.66	74.12	76.45	99.08	-	44.51	ю.50	6.50	6,50	15.49	61.49			STA 92+38 TO STA 92+88	4'+0"	5'-6"+	5'-6"	4'-0"	
STA 84+68	72.09	73.71	73,91	96.66	73.55	74.01	76.35	98.97		44.51	10.50	6.50	6,50	15.46	61.46			STA 92+88 TO STA 93+38	4'-0"	5'-6"+	5'-6"	4'-0"	
STA 84+78	72.05	73.61	73.79	96.54	73.45	73.90	76.24	98.87		44.51	Ю.50	6.50	6.50	15 41	61.41			STA 93+38 TO STA 93+88	5'-0"		5'-6"+	5'-0"	
STA 84+88	72.02	73.51	73,68	96.43 96.32	73.35	73.80	76.14	98.76	47.76	44.51	Ю.50	6.50	6.50	15_34	61.34	64.59		* INDICATES MIN 5'-6" ROOF SL STA 91+99 TO STA 93+88 V	AB THICKNES (HEN NO STE	S PIS			
STA 85+08	71.98	73.40	73.57	96.32	73.24	73.69 73.58	76.03	98.66 98.55	-	44.50	10.50	6.50	6.50	15.24	61.24			REQUIRED IN ROOF SLAB.			۸B		
STA 85+18	71.79	73.30	73.36	96.22	73.06	73.58	75.92	98.55	-	44.50	10.50	6.50	6.50	15.13	61.13			 INDICATES MIN ROOF SLAB TH TO STA 89+88 FOR LEVEL F 		ROM (~~
STA 85+28	71.69	73.09	73.26	96.01	72.97	73.37	75.75	98.37	-	44.50	10.50 10.50	6.50 6.50	6.50	14.99 14.97	50.99			STA 89+38 TO STA 89+65 VARES, SEE DWG S-354		F			FORMATION 6,095,22
STA 85+38	71.58	72.99	73.16	95.91	72.88	73.26	75.38	98.01	47.76	44.50	10.50	6.50	6.50 6.50	14_87 14.74	60.82 60.62	63.87						AND 388	
STA 85+48	71 48	72.89	73.05	95.80	72.79	73.15	75.20	97.82		44.50	ю.50	6.50	6.50	H.74 H.61	60.62	10.00		* INDICATES MINIMUM ROOF SLA STA 86+88 TO STA 87+38 I		ODE	~	~	
STA 85+58	71,38	72.79	72.95	95.70	72.71	73.05	75.01	97.64		44.50	ю.50	6.50	6.50	H4.61	60.39			SLAB. THICKNESS GREATER A	HAUNCH FO		ALL PLA WORK	N REFEREN	NCES TO FUT
STA 85+68	71.27	72 68	72.85	95.60	72.62	72.94	74.83	97,45	1	44,50	10.50	6.50	6.50	H.47 H.34	59.85		NOTE	SANITARY SEWER LINE, SEE D	0 3-354A				WISE NOTED
STA 85+78	71,17	72.58	72.74	95.49	72.51	72.83	74.71	97,34		44.50	10 50	6.50	6,50	14.21	59.53		1. F	OR ELEVATION AND DIMENSION LOCA			AND 5-360		
STA 85+88	71.07	72.48	72.64	95.39	72.41	72.73	74.60	97.22	47.76	44.50	Ю.50	6.50	6.50	14.08	59.17	62.43	3.	FOR CONSTRUCTION JOINT LAYOUT S ALL STATIONS ARE ON I-90 CONSTR	UCTION B				200
STA 85+98	70.96	72.37	72.54	95.29	72.31	72.62	74_48	97.10		44.50	10.50	6.50	6.50	13.95	58.79		4, 0	EOMETRY GIVEN FOR STATION BI+6 WINT LOCATED PARALLEL TO THE F	D IS ALONG	THE CONSTR RENCE LINE	NUCTION	KF(CORI
STA 86+08	70.86	72.27	72.43	95.18	72.21	72.51	74.36	96.99		44.50	10.50	6.50	6.50	(3.82	58.38			STA 81+35, SEE DWG S-304.				DRA	WIN
1111	-	-		- 1 1		_		DESIGNED P	Y	~	-							STRUCTU	RE NO B-	16-549			
	TES ADDED							DESIGNED B R D CALL DRAWN BY D M YOU	15	Ken					HWAY DEP		BA	BOSTON MAR		STRIAL	PARK	SCALE:	ITS
THUS MABUMY UTI								CHECKED BY	11		Cent	ral Ar	tery (I	-93)/	Tunn	el (I-9	0) Project		TUNNEL E OF TU	NKE			CONTRACT NO
31 JAH RAEJMY PO	RTAL REDES	GN		09 SE P98 TYC	KSS INCO	RPORATED F	ELD CONDITIO	IN CHARGE	OSKY N	K. K.	SECTION DOCUMENTS		R / HATDEN	-WEGMAN	BECHTEL/ PA	RSONS BRING		DIMENSION	-		IS	-	CO4A2
BY SUB APP		SCRIPTION		DATE BY			CRIPTION	DATE 14 OCT 15	A Les	Y	SECTION DESIGN SUBMITTED:		ly Ree	1	MANAGEMENT CONS SUBMITTED FOR APP	PROVAL:	M. Willy	113	HEET I OF				RAWING NO. 42-S-310

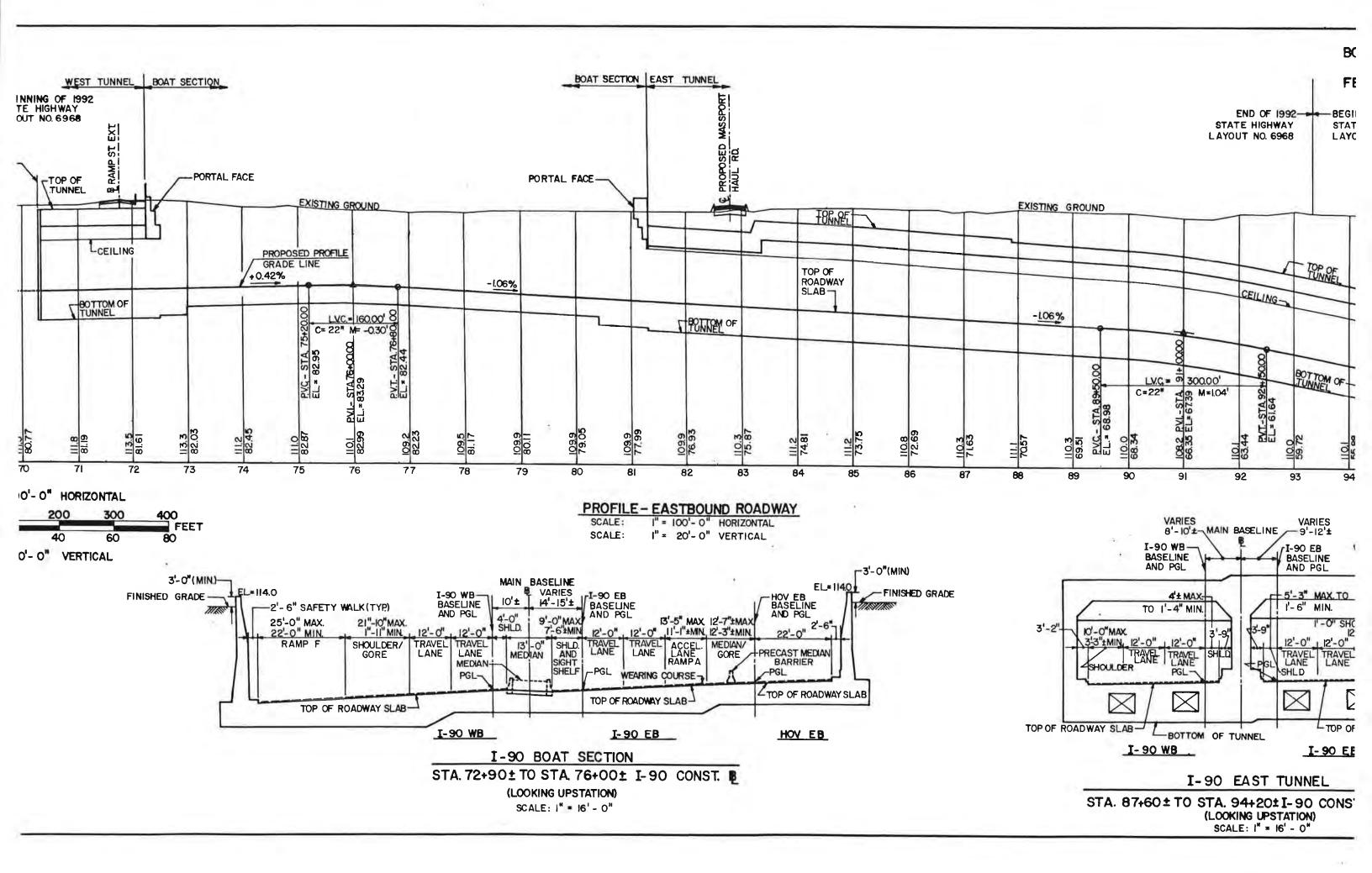

					TABLE (OF CONCR	EIE ELE	VATIONS A	ND DIMENSI	0000	~~~	~				
			EL	EVATIONS					FOR INFO	DRMATION. S	SEE RF1 NO	. 061 DIME	NSIONS			
LOCATION	ELEV. A	ELEV. B	ELEV. C	ELEV. D	ELEV. E	ELEV. F	ELEV. G	ELEV. H	La	В	С	D	E	F	G	н
STA 86+18	70.76	72.17	72.33	95.08	72,11	72.41	74.24	96.87	<u>∆</u> ^B	44.50	10.50	6.50	6.50	13.69	57.94	
STA 86+28	70.66	72.06	72.23	94.98	72.01	72.30	74.12	96.75		44.50	10.50	6.50	6.50	13.55	57.46	
STA 86+38	70.55	71.96	72.13	94.88	71.91	72.19	74.00	96.62	47.76	44.50	10.50	6.50	6.50	13.42	56.96	60.21
STA 86+48	70,45	71.86	72.02	94.77	71,81	72.09	73.87	96.50		44.50	10.50	6.50	6.50	13.29	56.42	
STA 86+58	70.35	71.75	71.92	94.67	71.71	71.98	73.75	96.38		44.50	10.50	6.50	6.50	13.15	55.85	1
STA 86+68	70.24	71.65	71.82	94.57	71.60	71.87	73.62	96.25		44.50	10.50	6.50	6.50	13.02	55.26	
STA 86+78	70.14	71.55	71.71	94.46	71.50	71.77	73.50	96.12		44.50	Ю.50	6.50	6.50	12.89	54.63	
STA 86+88	70.04	71.44	71.61	94.36	71.40	71.66	73.37	95.99	47.75	44.50	10.50	6.50	6.50	12.75	53.96	57.22
STA 86+98	69.93	71.34	71.51	94.26	71.30	71.55	73.24	95.86		44.50	10.50	6.50	6.50	12.62	53.27	
STA 87+08	69.83	71.24	71.40	94.15	71.20	71.45	73.11	95.73		44.50	10.50	6.50	6.50	12.48	52.55	
STA 87+18	69.73	71.13	71,30	94.05	71,10	71.34	72.98	95.60		44.50	10.50	6,50	6.50	12.35	51.80	1
STA 87+28	69.62	71.03	71.20	93.95	71.00	71.24	72.84	95.47		44.50	10.50	6.50	6.50	12.21	51.02	
STA 87+38	69.52	70.93	71.09	93.84	70.90	71.13	72.71	95.34	47.75	44.50	10.50	6.50	6.50	12.08	50.25	53.51
STA 87+48	69.42	70.82	70.99	93.74	70.80	71.02	72.58	95.20		44.50	10.50	6.50	6.50	11,94	49.51	
STA 87+58	69.31	70.72	70.89	93.64	70.70	70.92	72.45	95.07		44.51	10.50	6.50	6.50	11.81	48.79	-
STA 87+68	69.21	70.62	70.78	93.53	70.59	70.81	72.32	94.94		44.51	10.50	6.50	6.50	11.67	48.10	
STA 87+78	69.11	70.52	70.68	93.43	70.49	70.70	72.19	94.81		44.51	10.50	6.50	6.50	11.53	47.44	
STA 87+88	69.00	70.41	70.58	93.33	70.39	70.60	72.06	94.69	47.75	44.51	10.50	6.50	6.50	11.40	46.80	50.06
STA 87+98	68.90	70.31	70.47	93.22	70.29	70.49	71.90	94.52		44.51	10.50	6.50	6.50	11.26	46.19	
STA 88+08	68.82	70.21	70.37	93.12	70.20	70.38	71.72	94.34		44.50	Ю,50	6.50	6.50	11.13	45.6	1
STA 88+18	68.78	70.10	70.26	93.01	70.10	70.28	71.54	94.16		44.49	10.49	6.50	6.50	11.01	45.05	
STA 88+28	68.74	70.00	70.15	92.90	70.01	70.17	71.36	93.99		44.46	10.46	6.50	6.50	10.91	44.52	1
STA 88+38	68.71	69.90	70.03	92.78	69.9	70.06	71.19	93.81	47.67	44.42	10.42	6.50	6.50	10.83	44.0	47.27
STA 88+48	68.67	69.79	69.92	92.67	69.82	69.96	71.01	93.64		44.36	10.36	6.50	6.50	10.75	43.54	
STA 88+58	68.61	69.69	69.81	92.56	69.72	69.85	70.88	93.51		44.29	10.29	6.50	6.50	10.70	43.09	
STA 88+68	68.50	69.59	69.70	92.45	69.61	69.74	70.77	93.39		44.22	10.21	6.50	6.50	10.64	42.65	
STA 88+78	68.40	69.48	69.60	92.35	69.5	69.64	70.65	93.27		44.14	10.14	6.50	6.50	10.59	42.22	-
STA 88+88	68.30	69.38	69.49	92.24	69.40	69.53	70.53	93.16	47.32	44.07	10.06	6.50	6.50	10.54	41.81	45.06
STA 88+98	68.19	69.28	69.39	92.14	69.30	69.42	70,41	93.04		43,99	9.99	6.50	6.50	10.48	41.41	
STA 89+08	68.09	69.17	69.28	92.03	69.19	69.32	70.30	92.92		43.92	9.91	6.50	6.50	10.43	41.02	
STA 89+18	67.99	69.07	69.18	91.93	69.09	69.21	70.18	92.80		43.84	9.84	6.50	6.50	10.37	40.63	1
STA 89+28	67.88	68.97	69.07	91.82	68.98	69.11	70.06	92.69		43.77	9.76	6.50	6.50	10.32	40.26	1
STA 89+38	67.78	68.86	68.96	91.71	68.88	69.00	69.95	92.57	46.94	43.69	9.69	6.50	6.50	10.27	39.91	43.16
STA 89+48	67.68	68.76	68.86	91.61	68.77	68.89	69.83	92.46		43.62	9.61	6.50	6.50	10.22	39.56	
STA 89+58	67.57	68.66	68.75	91.50	68.67	68.78	69.71	92.34		43.54	9.54	6.50	6.50	10.16	39.22	1
STA 89+68	67.47	68.55	68.65	91.40	68.55	68.67	69.59	92.21	U	43.46	9.46	6.50	6.50	10.11	38.90	
STA 89+78	67.36	68.44	68.54	91.29	68.43	68.54	69.45	92.08		43.39	9.38	6.50	6.50	10.06	38.58	0
STA 89+88	67.24	68.33	68.42	91.17	68.29	68.40	69.31	91.93	46.56	43.31	9.31	6.50	6.50	10.01	38.28	41.53
STA 89+98	67.12	68.20	68.29	91.04	68.15	68.26	69,16	91.78		43.24	9.23	6.50	6.50	9.95	37.98	0
STA 90+08	66.98	68.07	68.15	90.90	68.00	68.11	68.99	91.62		43.16	9.16	6.50	6.50	9.90	37.70	1
STA 90+18	66.84	67.92	68.00	90.75	67.83	67.94	68.82	91.45		43.08	9.08	6.50	6.50	9.85	37.43	
STA 90+28	66.69	67.77	67.85	90.60	67.66	67.77	68.64	91.27		43.01	9.01	6.50	6.50	9.80	37.17	1
STA 90+38	66.52	67.61	67.68	90.43	67.48	67.59	68.46	91.08	46.18	42.93	8.93	6.50	6.50	9.75	36.92	40.17
STA 90+38	66.52	67.61	67.68	90.43	67.49	67.59	68.46	91.08	46.18	42.93	8.93	6.50	6.50	9.75	36.92	40.17
STA 90+48	66.35	67.43	67.51	90.26	67.30	67.40	68.26	90.88		42.86	8.85	6.50	6.50	9.70	36.68	
STA 90+58	66.17	67.25	67.33	90.08	67.10	67.20	68.06	90.68		42.78	8.78	6.50	6.50	9.65	36.46	
STA 90+68	65.98	67.06	67.13	89.88	66.89	66.99	67.84	90.46	1	42.70	8.70	6.50	6.50	9.59	36.24	
TTT					FOR ADD	EE PCN NO.	97.	B R D CA	BY	N	-			-		
MG KSST	ABLE REVIS	ED. NOTES	a service and					R D CA	SUNG A		Cent				HWAY DEP Tunn	ARTMENT 01 (1-9)
MH RAE JMY P	ORTAL REDESI	IGN						N CHURC	DLOSKY C	SAL I		,H	R / HAVDR	-WEGMAN	BECHTEL/ PA	REONS BRINCI
BY SUB APP	UNRECTIONS		the second se					OATE 14 OCT	A A A A A A A A A A A A A A A A A A A	The second second	SECTION DESIG	AFB-00044 //	ly Re.	10.0	MANAGEMENT CON	

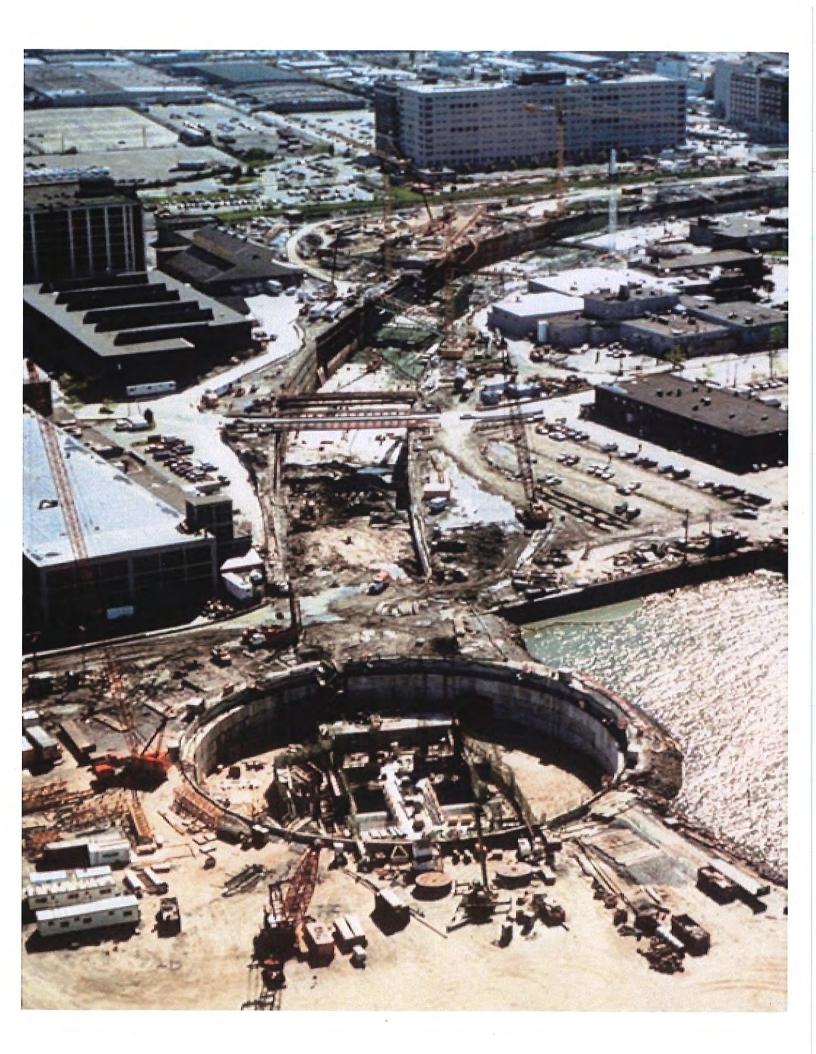

FOR CHAN FROM REPLA FOR LETTI

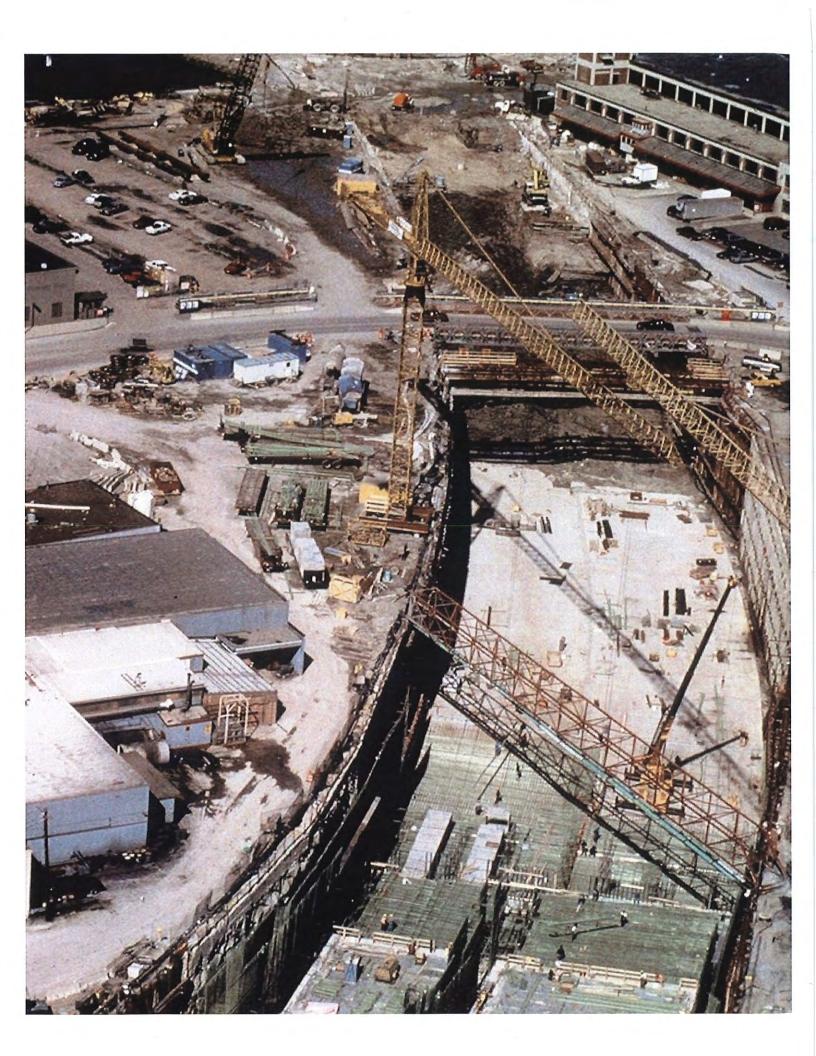

<u>NO</u> SEI

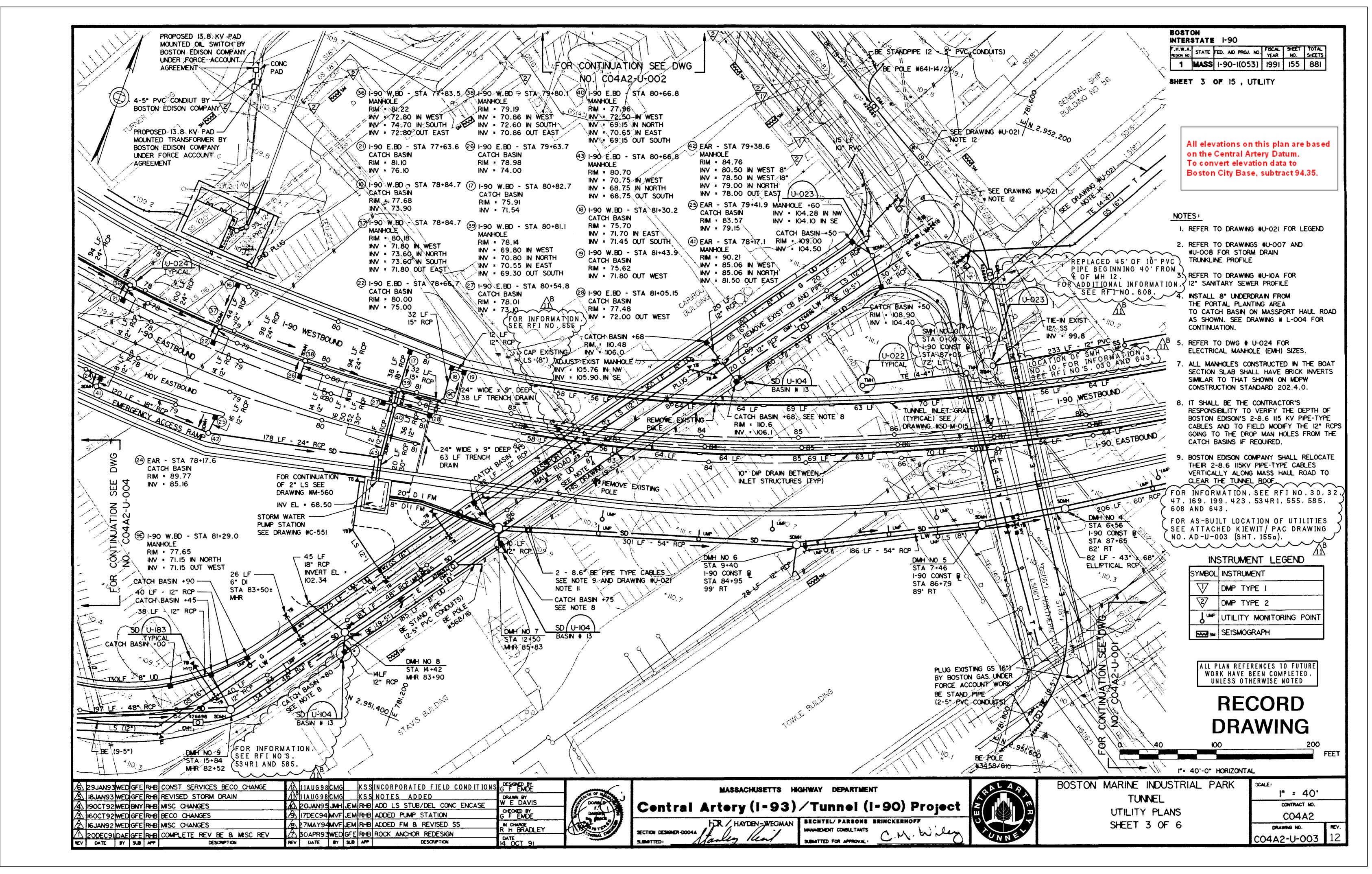

ec.

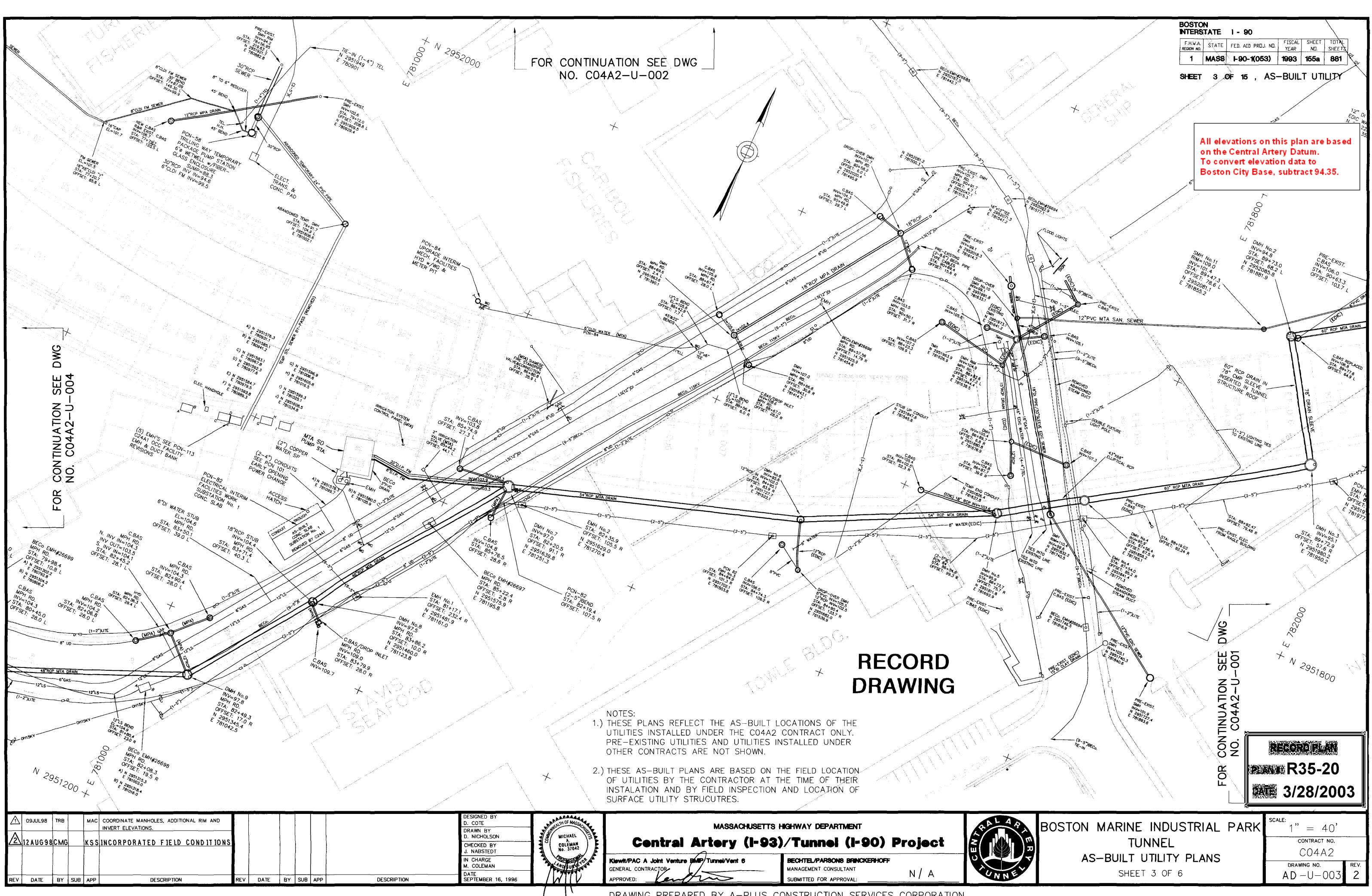
NOTES ON DWG S-310 INFORMATION. SEE RFI NO. 061. NGE FROM 3° TO 1 1/2° WEARING COURSE M STA. 90+38 TO STA. 93+88. EASTBOUND LANES. LACE VALUES ON DWG NO'S S-311 AND S-312. ADDITIONAL INFORMATION. SEE PCN NO. 097 AND FER C04A2-1099. MB ALL PLAN REFERENCES TO FUTURE WORK HAVE BEEN COMPLETED. UNLESS OTHERWISE NOTED	BOSTON INTERSTATE I-90 FILTURE AD PROL NO FISCAL STEET TOTAL 1 MASS I-90-I(053) 1991 353 881 SHEET 144 OF 204, STRUCTURAL
NGE FROM 3 ° TO 1 1/2 ° WEARING COURSE M STA. 90+38 TO STA. 93+88, EASTBOUND LANES. LACE VALUES ON DWG NO'S S-311 AND S-312. ADDITIONAL INFORMATION. SEE PCN NO. 097 AND FER CO4A2-1099.	A TE ON THE TENT
NOTES ON DWG S-310 INFORMATION, SEE RFI NO. 061. NGE FROM 3° TO 1 1/2° WEARING COURSE M STA. 90+38 TO STA. 93+88, EASTBOUND LANES. LACE VALUES ON DWG NO'S S-311 AND S-312. ADDITIONAL INFORMATION. SEE PCN NO. 097 AND TER CO4A2-1099. MER CO4A2-1099. MEL PLAN REFERENCES TO FUTURE WORK HAVE BEEN COMPLETED. UNLESS DTHERWISE NOTED RECORD	
NGE FROM 3 ° TO 1 1/2 ° WEARING COURSE M STA. 90+38 TO STA. 93+88, EASTBOUND LANES. LACE VALUES ON DWG NO'S S-311 AND S-312. ADDITIONAL INFORMATION. SEE PCN NO. 097 AND FER CO4A2-1099.	
OTES: EE NOTES ON DWG S-310 WORK HAVE BEEN COMPLETED. UNLESS DTHERWISE NOTED RECORD	NGE FROM 3 ° TO 1 1/2 ° WEARING COURSE M STA. 90+38 TO STA. 93+88. EASTBOUND LANES. LACE VALUES ON DWG NO'S S-311 AND S-312. ADDITIONAL INFORMATION. SEE PCN NO. 097 AND FER CO4A2-1099.
	OTES: EE NOTES ON DWG S-310 WORK HAVE BEEN COMPLETED, UNLESS OTHERWISE WOTED RECORD
STRUCTURE NO B-16-549	STRUCTURE NO B-16-549
BOSTON MARINE INDUSTRIAL PARK TUNNEL TABLE OF TUNNEL DIMENSIONS AND ELEVATIONS SHEET 2 OF 3	TUNNEL NIS CONTRACT NO. TABLE OF TUNNEL DIMENSIONS AND ELEVATIONS DRAWING NO. REV.

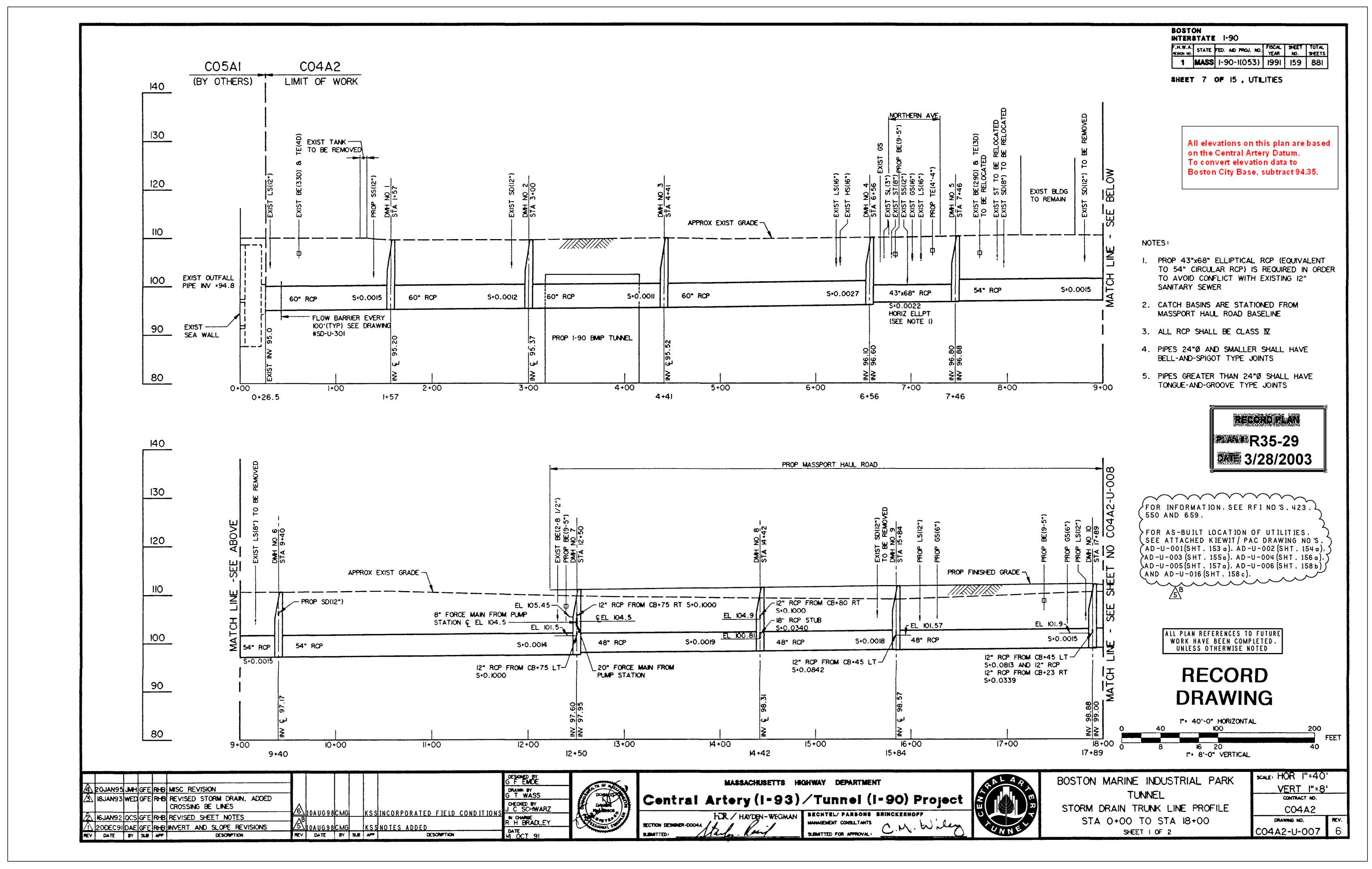


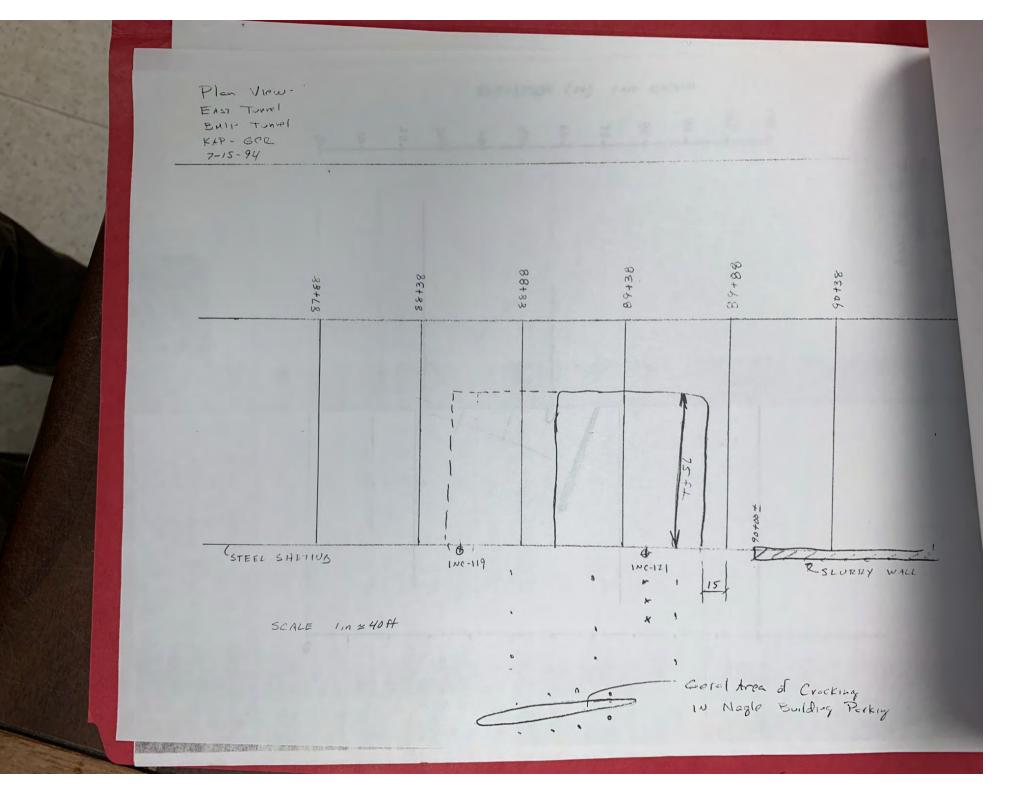

.

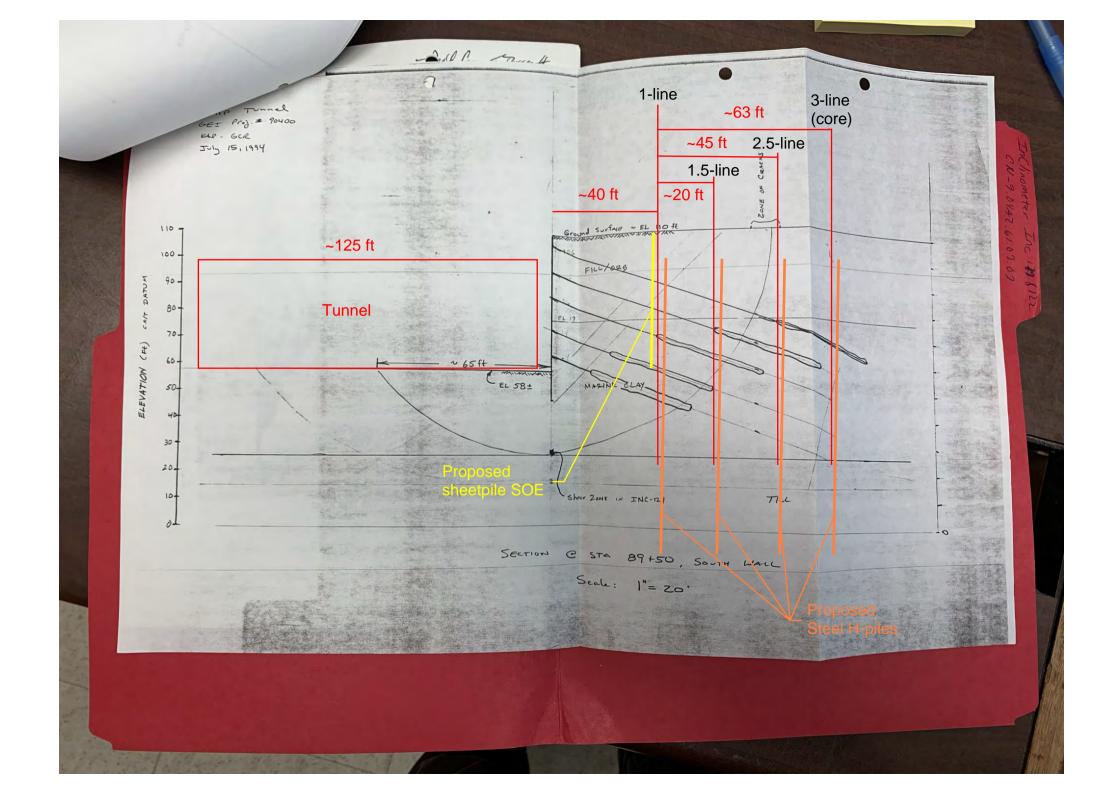

BOS

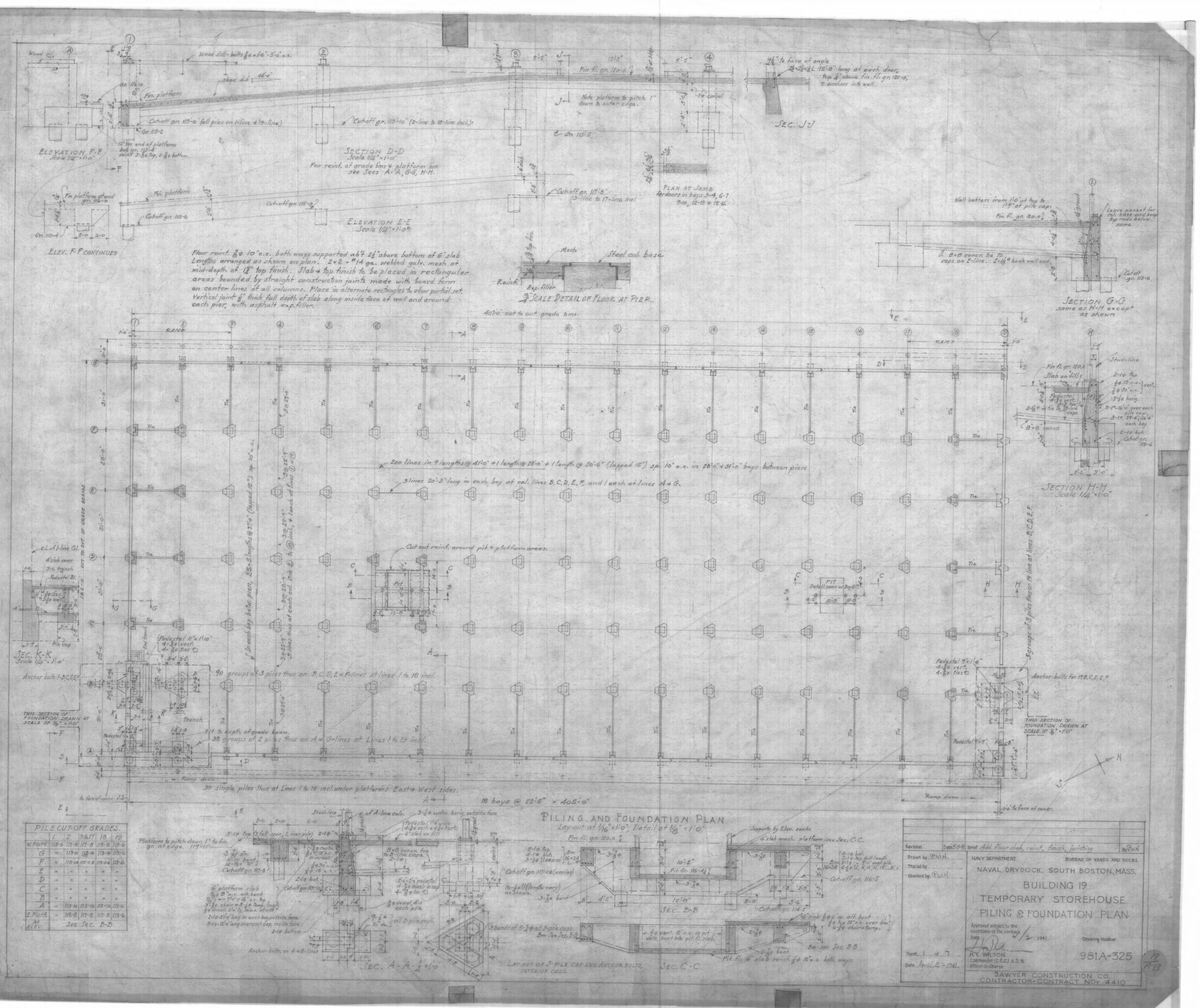

- IN S GEO

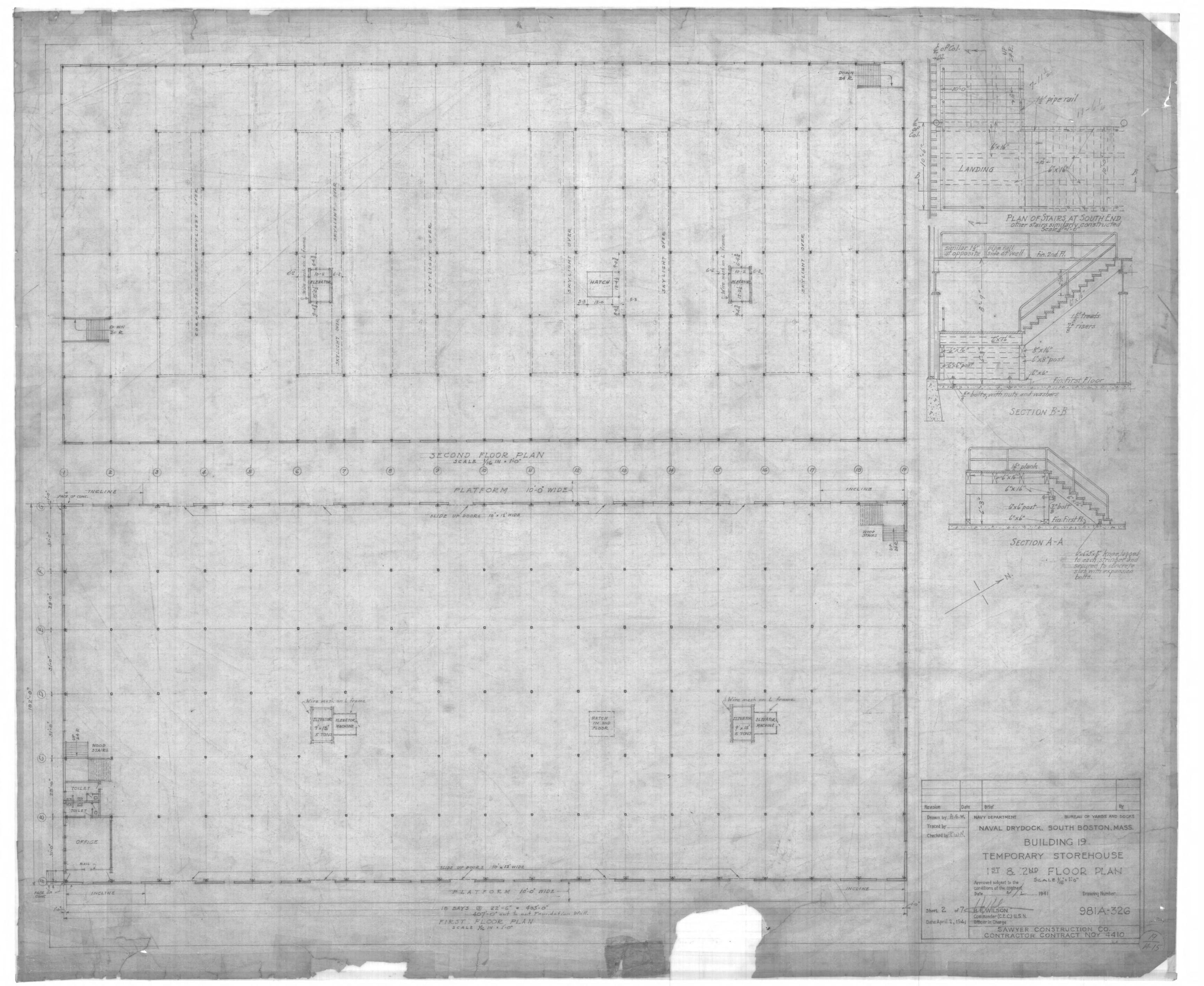

(Ь),	FARGO	; PR
		IN S
		PLU
		BET
		THE
		DEP
		(49!
	1.1	
	1	

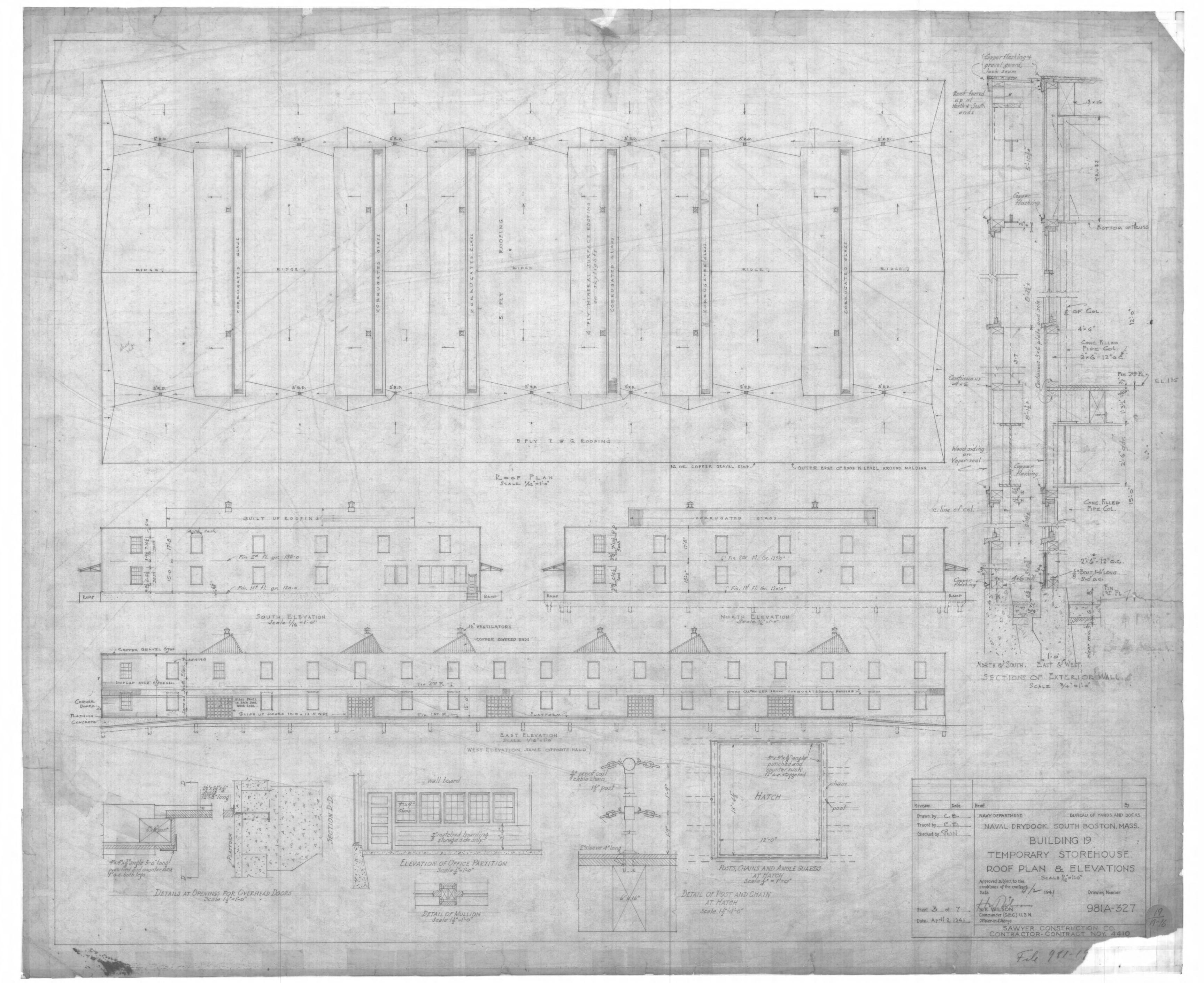


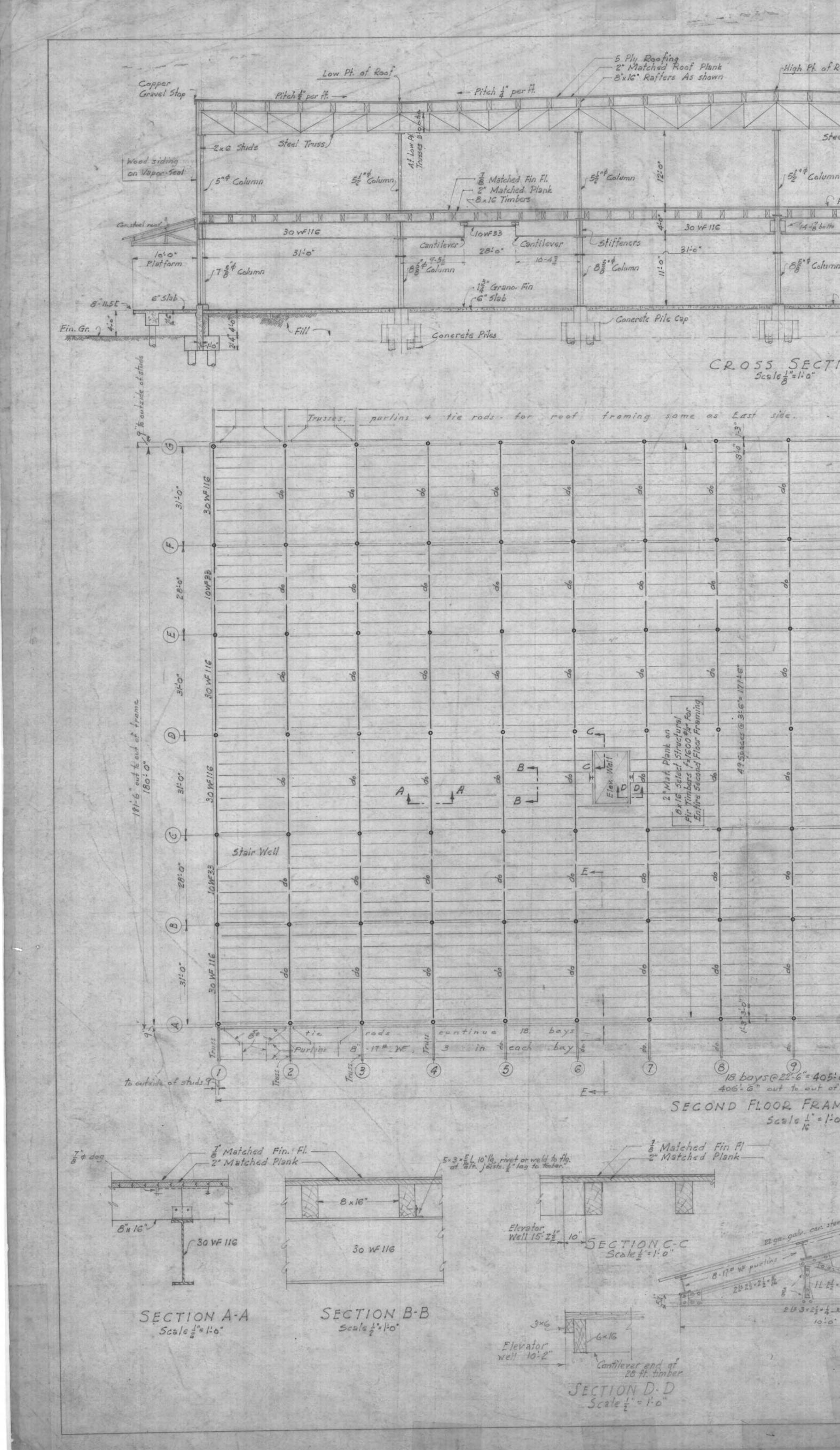







DRAWING PREPARED BY A-PLUS CONSTRUCTION SERVICES CORPORATION





- 5 Ply Roofing - 2" Matched Roof Plank - 8"x16" Rafters As shown See Roof Plan for skylight location Low Pt. of Roof High Pt. of Root Pitch 4" per H. ---Steel Truss -Steel Truss 53" Column 152 Column 15% Column Fin. Second Fl. Gr 30 WF 116 = 14-8 bolts 30 WF 116 LIONF33 30 WF 116 Cantilever End 28:0" Cantilever End Stiffeners Stiffeners 31-0" 31:0" 185 Golumn 185 Column (85 Column Fin First Fl. Gr.

12 2

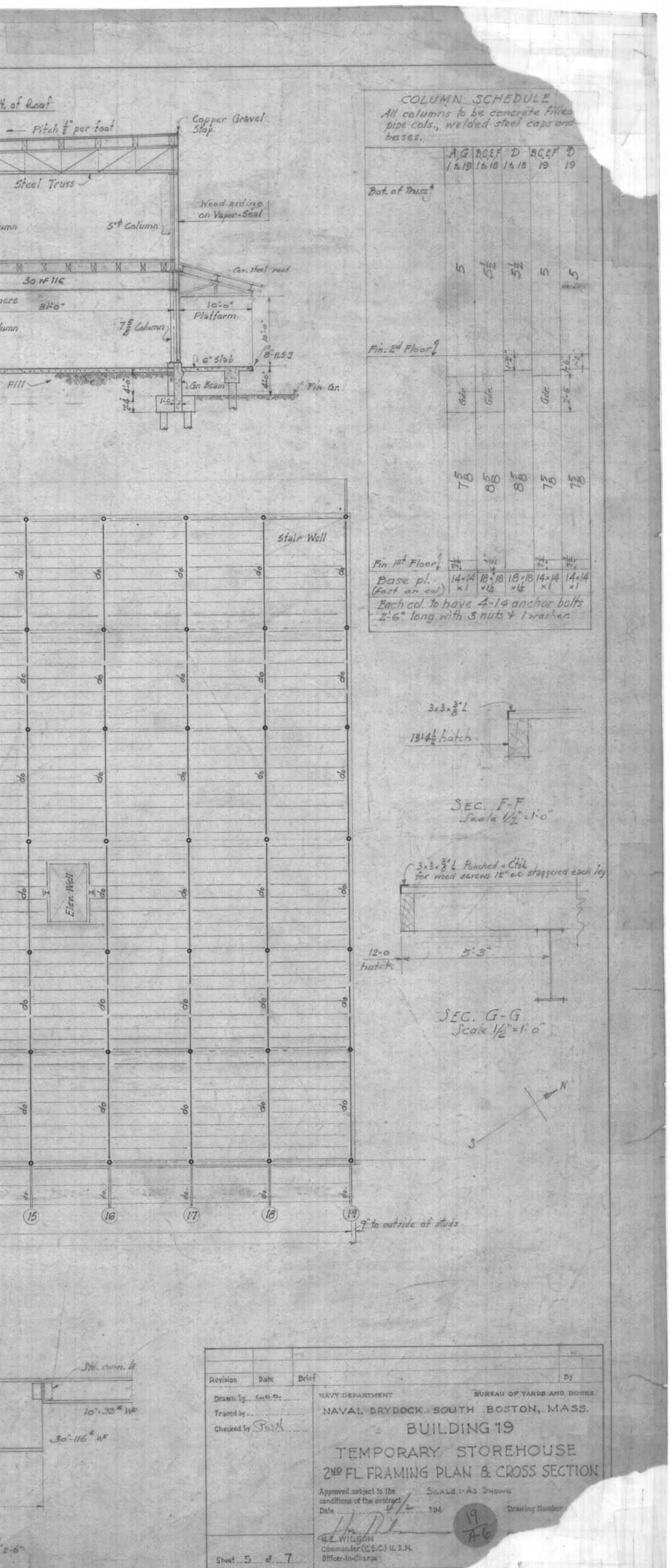
Concrete Pile Cap

CR.055 SECTION Scale 1"=1:0"

1 to

NOTE: All Columns to be Concrete filled Steel Pipe Columns.

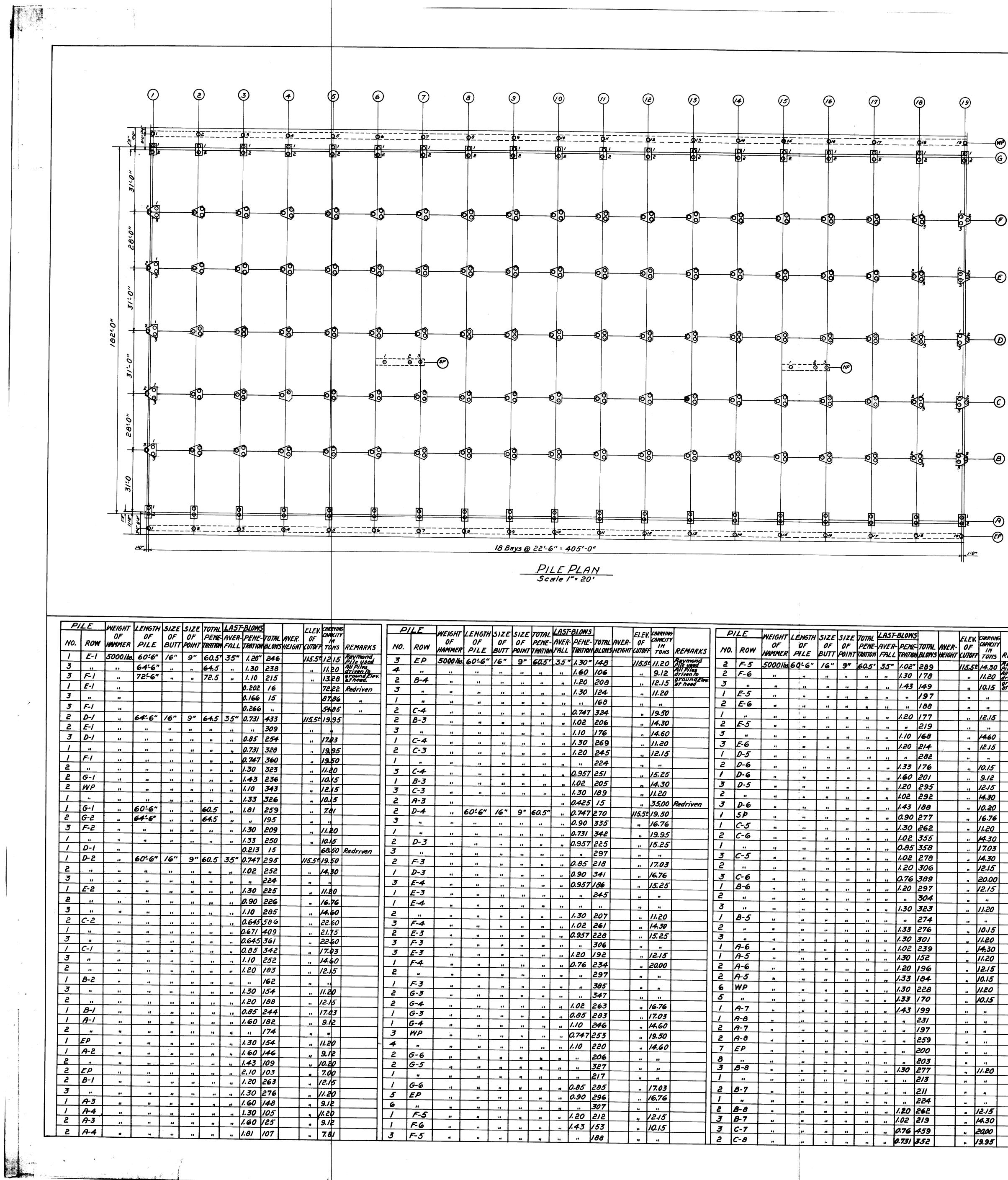
Approximate Existing Gr. 1


Fill

on :fural #/# For FA AL A Ha 0 0 Entir Fir T. Margar E. 18 bays @ 22-6"= 405:0" 406-6" out to out of frame

SECOND FLOOR FRAMING PLAN 500/01"=1:0"

'ma


Fin. fl. gr. 135-0 5" Column - & Matched Fin Fl-- & Column 4"x6"-52"Column 1'3" - Bx 16"9 21332×32×56 fitted. 8" 4 - Stiffeners 9 2 2 3 2 x 3 x 16 fitted 8-17 " W" put 1001-215 22 × 2×2 21322-22-52 / H 22 + 2+ 1 Calumn - 85 Column The sol 010-10 2133×22×4_1 2 Gr. 130.0 31-0" 1'olt 9-52 SECTION E-E Scale = 1-0" 18×18=14 pl. 4-1¢ bolt= 2:6" Cantilever end of 28 ft. timber * N mit 14 grout

Sheet 5 of 7 Date April 2, 1941

FILE TR

SAWYER (

SIZE	SIZE	TOTAL	LAST-	<u>BLOWS</u>			ELEV.	CARRYING		P	ILE	WEIGHT	LENGTH	6175	617=	TOTAL	LAST-	BLOWS	1			CA801/11-1	Ţ
OF	OF	PENE- TRATION				AVER-	OF		REMARKS	NO.	ROW	OF HAMMER	DF	OF	OF	PENE-	AVER-	PENE	TOTAL	AVER-	ELEV. OF	CAPACITY	1
16"	9"			1.30"	<u> </u>				Raymond Pile used	2	F-5				1				<u> </u>	HEIGHT			17
					106			9./2	All Piles driven to	2	F-6	50001bs	64-6	/6"	9″	60.5'			289	 	<u> 15.5±</u>	/4.30	ł
••			я		208			12.15	groundElex.	3			. <u></u>			••	"	1.30	178	<u> </u>	"	11.20	
				P	124			11.20		5	" E-5			"	**			1.43	149		<u> </u>	10.15	ľ
					168			"		2	E-6				- 11	•	- 44	n	197		10	"	┞
			.,	0.747				19.50				"		"	н		••		188		n		┞
	.,			1.02	206			14.30		2	<u>"</u> E-5	- "	1 DB	"	- 18		- 1	1.20	177			12.15	Ł
				1.10	176			14.60		3					••		**	"	219		••	"	┞
•1					269			11.20		3	" E-6		- 11		••			1.10	/68		••	14.60	┡
••	.,	,,		1.20	245			12.15		5	D-5	"			••		- 11	1.20	214	· · · ·	-11	12.15	┝
•#					224					2	D-6	"			••	••		<i>n</i>	282		••		┝
				0.957			- 11			5	D-6		••	- 10	**				176		-11	10.15	┡
	н				205			14.30		3	D-5	"	••		M	••			201		••	9.12	┝
••					189			11.20		2	"	•		- "	*	- *			<i>295</i>			12.15	┝
				0.425					Redriven	3	" D-6		<u> </u>			"			<i>292</i>			14.30	┝
16"	9"	60.5"		0.747				19.50		5	SP	n 	- • ø	- 11	••	- "			/88			10.20	\vdash
	.,				335			16.76		$\frac{1}{1}$	C-5	••			••	64		0.90				16.76	┝
		.,			342			19.95		2	C-6			- 11		- "			262			11.20	┝
	,,			0.957				15.25						- 10		- "			355		"	14.30	┝
"					297					3	" C-5	- 11	••	••	••			0.85				17.03	┝
					218			17.03		2				••					278			14.30	-
	м	.,		0.90	341			16.76		3	" C-6		••	"					306			12.15	-
				0.957				15.25			B-6		••						389			20.00	⊢
					245					2			••		- **	"			297			12.15	<u> </u>
.,	.,	.,								3			•						304		- "	"	_
			1	1.30	207			11.20			" B-5			"	*1			1.30	323		- 11	11.20	
					261			14.30		2	<u>D-5</u>		,,	н					274		.,	"	
	.,				228			15.25		3	<i>"</i>		lt		••				276			10.15	
"					306			"		$\overline{)}$	" A-6	- "			- 11				301			11.20	
н	.,		••	1.20	192			12.15		$\dot{1}$	A-5			^ .,					239 152			1 4. 30 11.20	
				0.76	234			2000		2	A-6								196			12.15	
				.,	297		4	"			A-5					-"			184			10.15	
					385					6	WP				- "	_"			228				
	10				347		.,			5	,,								170			11.20	
				1.02	263			16.76			A-7			-"	- "	-"						10.15	_
				0.85	283			7.03			A-8	60	<u>-</u>				_"/		/99			••	
		•1		1.10	246			4.60			A-7					_ "	-"		231 197			-"	
••	••		k	0.747	253			19.50			A-8			_"			-"		259				
				1.10	220			14.60			EP	- ++									-		
81		4			206					8			3 00			<u> </u>			200				
- 11	n	4			327			"			 8-8			_"	- "		-"		203 277			"	
	4				217			,		$\overline{7}$				••		N			2/3			11.20	
			. (285			7.03		2	8-7											"	
					296			6.76		6				- "					2//	<u> </u>	•	*	
					307		<u></u>	"		2	" 8-8		<u>a</u>	- 11	- 4		н		224				
	-1	-11			212			2.15			8-7		- 44	+					262			12.15	_
		н			153			0.15			C-7			<u> </u>	"			.02				14.30	
	#				188			"			C-8			<u> </u>		-"		2.76				2000	
				<u>I'</u>	<u> </u>	I		<u> </u>		<u> </u>							. 10	.73/	JJZ	I	н /	9.95	

											7			
											7			
					· · ·									
	PI.		WEI GHT OF	LENGTH OF	SIZE OF	SIZE OF	TOTAL	LAST	BLOW	τητοι	AVER.	ELEV. OF	CARRYING CAPBCITY	
ARKS	NO.	ROW	HAMMER	PILE	BUTT	POINT	TRATION	FALL	TRATIO	BLONS	HEIGHT	CUTOFF		REMARKS
nond sed	3	<u>C-8</u> C-7	50001bs		/6 * 	9 ″	<i>60.5'</i> "	<u>35"</u>	0.747 0.85	408		//5.5±	19.50 17.03	Raymond Pile used All Piles drivento
Elev.	2								····	436			21.75	ground Elev. at head.
		C-8				н			1.10	268		<i>p</i> i	14.60	
	1	SP			<u> </u>		••	4	1.20	195		H	12.15	
	3						**		-	272 2 36			14.30	
	3	ш	<u> </u>	1	 			34	1.20		I			•
	3 2 3 2			 				##	1				12.15 11.20	
	3 2 3	 D-7 D-8				1	1		1	240 212			11.20 	
	3 2 3 2 3 1	л D-7 D-8			*1			*	1.30 143	240 212 192) (11.20 • 10.20	
	3 2 3 2	л D-7 D-8 м D-7 и	10 10 10 10		, 1 30 10 11		17 50 52	- M	1.30 143 130	240 212 192 210		11 11 11	11.20 • 10.20 11.20	
	3 2 3 2 3 2 3 1 2 1	л D-7 D-8 п D-7	10 10 10 10 10	11 10 11 11	** ** **		10 14 13 49	10 13 14	1.30 143 130 1.43	240 212 192 210 206		18 18 18 19 19	11.20 • 10.20 11.20 10.20	
	3 2 3 2 3 1 2 1 2 1 3 2	л D-7 D-8 м D-7 л D-7 л D-8	10 10 10 10 10		, 1 30 10 11		17 50 52	- M	1.30 143 130 1.43 	240 212 192 210		** ** **	11.20 • 10.20 11.20	
	3 2 3 2 3 1 2 1 2 1 3	л D-7 D-8 м D-7 л D-8 E-7 E-8 	10 10 10 10 10 10 10 10	11 10 11 11 11 11	11 10 11 11		10 15 15 10 10 10	N 13 N 14	1.30 143 130 1.43 110	240 212 192 210 206 213 224 164		** ** ** **	11.20 " 10.20 11.20 10.20 "	
	3 2 3 2 3 2 3 1 2 1 3 2 3 1	л D-7 D-8 м D-7 л D-8 E-7 E-8 E-7	10 10 10 10 10 10 10 10 10 10 10	11 10 10 11 11 11 11 11 11 11 11 11 11 1	11 10 11 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8 11 11 11 11	10 10 10 10 10 10	10 13 10 10 10 10	1.30 143 130 1.43 110	240 212 192 210 206 213 224 164 165		** ** ** **	11.20 10.20 11.20 10.20 14.60	
	3 2 3 2 3 2 3 1 2 1 3 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 2 3 3 2 3 3 2 3 3 3 3	л D-7 D-8 п D-7 п D-8 E-7 E-7 E-7 E-7 E-7	10 10 10 10 10 10 10 10 10 10 10 10 10 1	···	** ** ** ** **	8 11 11 11 11 11 11	20 20 20 20 20 20 20 20 20 20 20 20 20 2	10 10 10 10 10 10 10 10 10 10	1.30 143 130 1.43 110 1.30 	240 212 192 210 206 213 224 164 165 196		22 10 10 10 10 10 10 10 10 10 10 10	11.20 	
	3 2 3 2 3 2 3 1 2 1 3 2 3 1	л D-7 D-8 м D-7 л D-8 E-7 E-8 E-7	10 10 10 10 10 10 10 10 10 10 10	···	** ** ** ** **	8 9 11 11 11 11 11 11 11 11	10 10 10 10 10 10 10 10 10 10 10 10	20 10 01 01 01 01 01 01 01 01 0	1.30 143 130 1.43 110 1.30 0.90	240 212 192 210 206 213 224 164 165 196 290		00 11 11 11 11 12 13 14 15 15 16 17 17 17 17 17 17 17 17 17 17	//.20 /0.20 //.20 /0.20 /4.60 //.20 	
	3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 1	л D-7 D-8 D-7 -7 E-7 E-7 E-7 E-7 E-7 E-8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	···	** ** ** ** **	8 11 11 11 11 11 11	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 10 01 01 01 01 01 01 01 01 0	1.30 143 130 1.43 110 1.30 0.90	240 212 192 210 206 213 224 164 165 196		00 11 11 11 11 12 13 14 15 15 16 17 17 17 17 17 17 17 17 17 17	//.20 /0.20 //.20 /4.60 //.20 /6.76 //.20	
	3 2 3 2 3 2 3 1 2 1 3 2 3 1 2 1 3 1 3	л D-7 D-8 п D-7 л D-8 E-7 E-8 E-7 E-7 E-7 E-8 Г-7 E-8 Г-7	10 11 11 12 13 14 10 10 10 10 10 10 10 10 10 10	···	** ** ** ** ** **		H 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10	1.30 143 130 1.43 110 1.30 0.90 1.30	240 212 192 210 206 213 224 164 165 196 290 237		22 13 14 14 14 14 14 14 14 14 14 14	//.20 /0.20 //.20 /0.20 /4.60 //.20 	
	3 2 3 2 3 2 3 2 3 1 2 1 3 2 3 1 2 1 3 2 1 2 1 3 2 1 2 1 2 1 2 1 2 1 2	⊥ D-7 D-8 D-7 D-7 D-8 E-7 E-8 E-7 E-7 E-7 E-8 F-7 F-8 F-7 		11 10 10 11 11 12 12 13 13 13 13 13 13 13 13 13 13	11 10 11 11 11 11 11 11 11 11 11 11		10 10 10 10 10 10 10 10 10 10 10 10 10 1	20 10 01 02 03 04 05 06 07 08 09 09 09 00 00 00 00 00 00 00	1.30 143 130 1.43 110 1.30 1.30 1.30	240 212 192 210 206 213 224 164 165 196 290 237 180		22 13 14 14 14 14 14 14 14 14 14 14	//.20 /0.20 //.20 /.20 /4.60 //.20 /6.76 //.20 	
	3 2 3 2 3 2 3 1 2 1 3 2 3 1 2 1 3 2 1 2 1	D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 E-7 E-7 E-7 E-7 F-7 F-8 F-7 F-8 F-7 G-7		11 10 10 10 10 10 10 10 10 10	···		10 10 10 10 10 10 10 10 10 10 10 10 10 1	F5 10 01 01 01 01 01 01 01 01 01 01 01 02 03 04 05 06 07 08 09 00 00 00 00	1.30 143 130 1.43 110 1.30 1.30 	240 212 192 210 206 213 224 164 165 196 290 237 180 282 204 236		00 10 10 10 10 10 10 10 10 10	//.20 /0.20 //.20 /.20 /4.60 //.20 	
	3 2 3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 1 2 2 1 2 2 2 2	D-7 D-8 D-7 D-7 D-7 D-7 D-7 D-7 D-7 E-7 E-7 E-7 E-7 F-7 F-8 F-7 G-7 G-8		···	··		10 10 10 10 10 10 10 10 10 10	10 11 12 13 14 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10	1.30 143 130 1.43 110 1.30 0.90 1.30 	240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 282 204 236 240			//.20 	
	3 2 3 2 3 2 3 1 2 1 3 2 3 1 2 1 3 2 1 2 1	л D-7 D-8 п D-7 л D-8 E-7 E-7 E-7 E-7 E-7 E-7 F-8 F-7 F-8 F-7 G-8 G-7 G-8 G-7			11 10 11 10 11 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13		H 	10 11 12 13 14 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10	1.30 143 130 1.43 110 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.10 1.43 1.10 1.43 1.10 1.30 1.30 1.30 1.43 1.10 1.30 1 1	240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 282 204 236 240 260			//.20 	
	3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 E-7 E-7 E-7 E-7 F-7 F-8 F-7 G-7 G-7 G-8 G-7 G-8 G-7 G-8		···	11 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14		10 10 10 10 10 10 10 10 10 10	10 11 12 13 14	1.30 143 130 1.43 110 1.30 1.30 1.30 1.30 1.30 1.30 	240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 282 204 236 240 260 264		10 11 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 18 19 11 11 12 13 14 15 16 17 18 19 11 11 12 13 14 15 16 17 18 18 19 11 11 12 13 14 14 15 16 16 17 18 18 19 <td>//.20 10.20 1/.20 1/.20 14.60 11.20 </td> <td></td>	//.20 10.20 1/.20 1/.20 14.60 11.20 	
	3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2	D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 E-7 E-7 E-7 E-7 F-7 F-8 F-7 G-7 G-7 G-8 WP			11 10 11 10 11 10 11 10 11 10 11 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19		H 10 10 10 10 10 10 10 10 10 10	10 11 11 11 11 11 12 13 14 15 16 17 18 19 10 10 10 11 12 13 14 15 16 17 18 19 10	1.30 143 130 1.43 110 1.30 0.90 1.30 1.30 1.10 1.10 0.645	240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 282 204 236 240 264 264 417		J II III IIII IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	//.20 10.20 //.20 //.20 /4.60 //.20 	
	3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 E-7 E-7 E-7 E-7 F-7 F-8 F-7 G-7 G-7 G-8 G-7 G-8 G-7 G-8			11 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 11 11 12 13 14 15 16 17 18 19 11 11 12 13 14 15 16 17 18 19 110		10 10 10 10 10 10 10 11 10 10 11 10 11 10 11 10 10 11 10 10 10	10 11 11 11 12 13 14 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17	1.30 143 130 1.43 110 1.30 0.90 1.30 	240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 237 282 204 236 240 264 260 264 417 338		38 10 10 10 10 10 10 10 11 12 13 14 15 16 17 18 10 10 11 12 13 14	//.20 	
	3 2 3 2 3 1 2 1 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 7 1 1 8 7 1 1 8 7 1 1 1 8 7 1 1 1 1 1 1 1 1	D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 E-7 E-7 E-7 E-7 E-7 E-7 E-7 E-7 G-7 G-8 G-7 G-8 WP			11 10 11 10 11 10 11 10 11 10 11 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19		H 10 10 10 10 10 10 10 10 10 10	10 10 11 11 11 12 13 14 15 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 11 12 13 14	1.30 143 130 1.43 110 1.30 0.90 1.30 1.10 0.645 0.85 1.30	240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 237 282 204 236 240 264 260 264 417 338		38 10 10 10 10 10 10 10 11 12 13 14 15 16 17 18 10 10 11 12 13 14	//.20 10.20 //.20 //.20 /4.60 //.20 	
	3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 3 2 3 2 3 2 3 2 3 2 <td< td=""><td> D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 G-7 G-8 G-7 G-8 WP F-8</td><td></td><td></td><td></td><td></td><td>H </td><td>10 11 11 11 11 12 13 14 10 11 12 13 14 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17</td><td>1.30 143 130 1.43 110 1.30 1.30 1.30 1.30 1.30 1.30</td><td>240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 237 282 204 236 240 264 264 264 264 264 264 264 264 282</td><td></td><td></td><td>//.20 10.20 1/.20 1/.20 14.60 11.20 </td><td></td></td<>	D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 D-7 G-7 G-8 G-7 G-8 WP F-8					H 	10 11 11 11 11 12 13 14 10 11 12 13 14 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17	1.30 143 130 1.43 110 1.30 1.30 1.30 1.30 1.30 1.30	240 212 192 210 206 213 224 164 165 196 290 237 180 237 180 237 282 204 236 240 264 264 264 264 264 264 264 264 282			//.20 10.20 1/.20 1/.20 14.60 11.20 	

a de la companya de l

Drawn by Traced by H.F.B. Checked by Supervised by In Charge Sheet I of 2	U.S.NAVY YARD NAVAL DRY DOCK BUILDING TEMPORARY PILE RECO	STOREHOUSE
PW Drawing No.	Approved 15	942

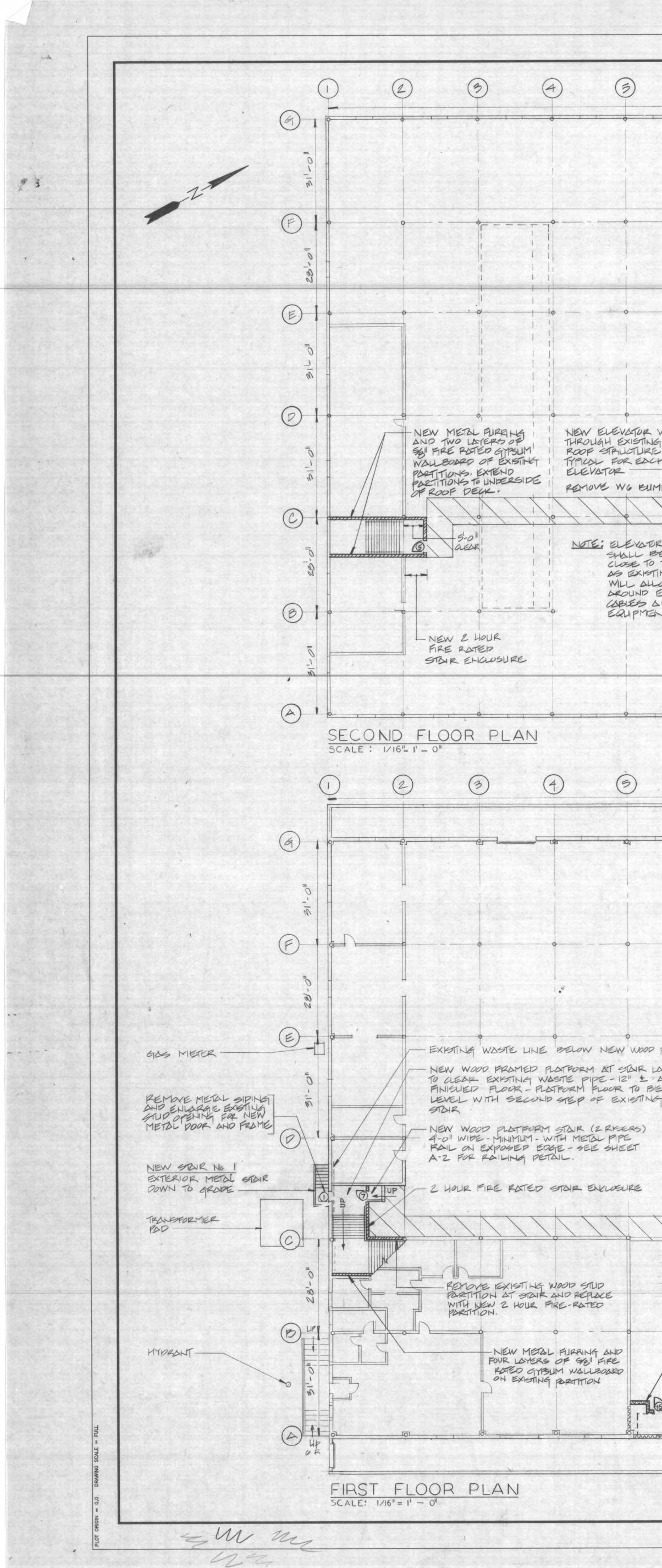
Copied from Pile Record Cards March & April 1941

981-19-3

Public Works Officer

* *

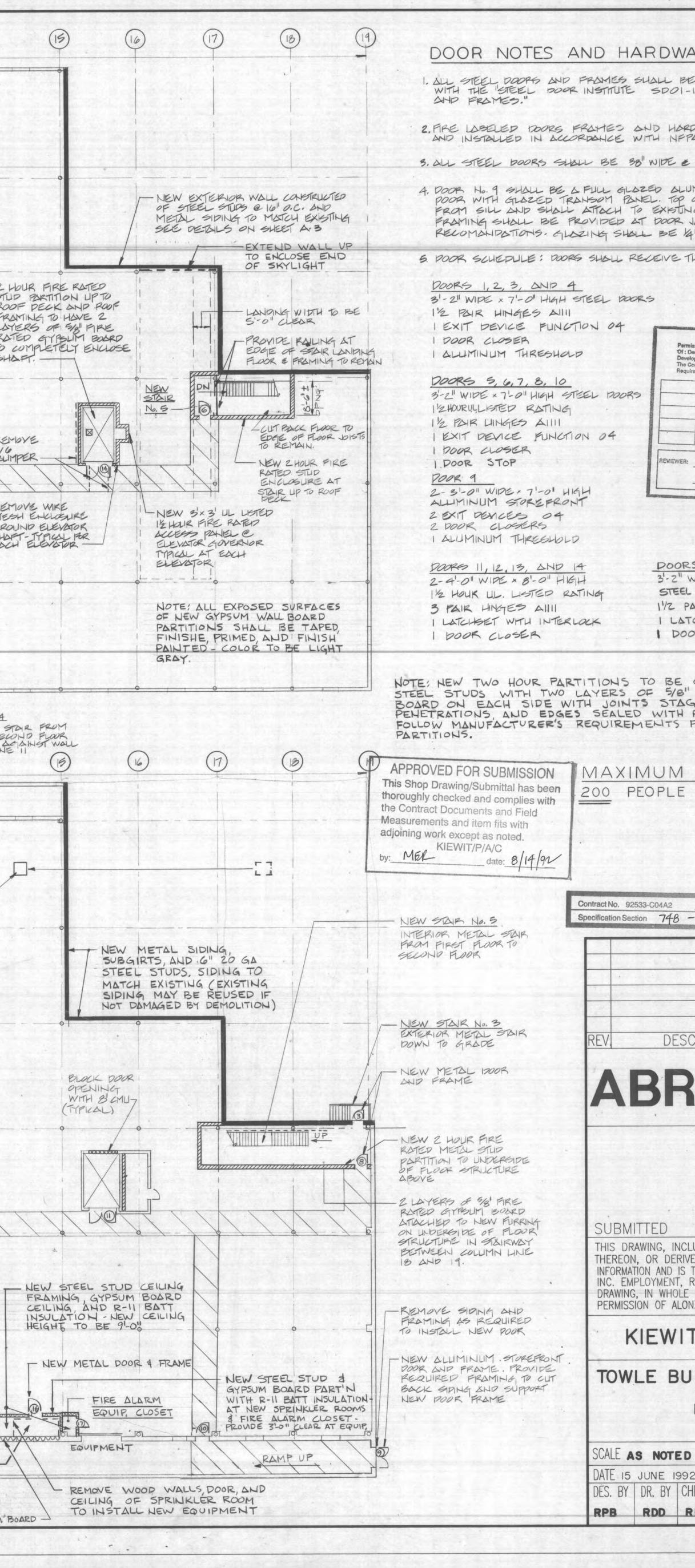
PILE WEIGHT LEWER ALL ALL ALL ALL ALL ALL ALL ALL ALL AL			
WEIGHT LENGTH SIZE SIZE TOTAL LIGT LEUNS	PILE WEIGHT LENGTH SIZE SIZE TOTAL LAST-BLOWS ELEV. CARRYING	PILE WEIGHT LENGTH SIZE SIZE TOTAL LAST-BLOWS ELEV CARRYING	PILE WEIGHT LENGTH SIZE SIZE TOTAL LAST-BLOWS ELEV CARRYING
NO. ROW OF OF OF OF OF OF OF OF PENE-AVER: PENE- TOTAL AVER. OF IN HAMMER PILE BUTT POINT TRATION FALL TRATION BLOWS HEIGHT CUTOFF TONS		CE DE DE DE DE DE DE COMPANY	
HAMMER PILE BUTT POINT TRATION FALL TRATION BLOWS HEIGHT CUTOFF TONS	S NO. ROW OF OF OF OF PENE-AVER. PENE-TOTAL AVER. OF CAPACITY HAMMER PILE BUTT POINT TRATION FALL TRATION BLOWS HEIGHT CUTOFF TONS	NO. ROW OF OF OF OF PENE-AVER. PENE-TOTAL AVER. OF IN REMARKS	NO. ROW OF OF OF OF PENE-AVER. PENE-TOTAL AVER. OF CAMELITY REMARKS
1 G-10 5000 lbs. 60'-6" 16" 9" 60.5' 35" 1.30" 205 115.5t 11.20 Raymond Pile used	7 0 11 FOADU COLEU LON ON COLEUR DUN DU COLEUR	WHMMMER PILE BUIT POINT VRAINON FALL VRATION BLOWS WEIGHT CUPOFF TONS	HAMMER PILE BUTT POINT TRATION FALL TRATIONALOUS WEIGHT CUTOFF TONS
	$\frac{5}{10^{-11}} \frac{5}{5000} \frac{10^{-6^{-1}}}{15.5^{-1}} \frac{16^{-6^{-1}}}{16^{-6^{-1}}} \frac{9^{-6}}{60.5^{-1}} \frac{35^{-7}}{35^{-7}} \frac{1.10^{-7}}{10^{-7}} \frac{207}{115.5^{-1}} \frac{14.60}{14.60} \frac{10^{-10}}{110^{-10}} \frac{110^{-10}}{10^{-10}} \frac{10^{-10}}{10^{-10}} \frac{10^{-10}}{1$	1 F-13 5000/bs 60'-6" 16" 9" 60.5' 35" 0.85" 363 115.5t 15.30 Raymond	2 G-17 50001bs. 60'-6" 16" 9" 60.5' 35" 0.65" 422 115.5 22.60 Pile used
i v.c. to ground Elev	2 D-12	2 0.75 351 17.00 All Plesdriven	2 G-17 50001bs. GO'-G" 1G" 9" GO.5' 35" 0.65" 422 115.5" 22.60 Pile used 1 F-17 0.90 396 16.80 foground Elex.
	3	1 F-14 0.92 255 14.30 af head	3
	1 D-11 0.90 323 16.76	2 6-14	
1 F-9 1.20 229 12.15	2		
1 F-10			<u>3 F-18 0.70 370 20.20</u>
3 F-9		<u>/</u>	<u> </u>
3 F-10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 G-14	1 F-18 ,
2		1 WP-13 0.92 298 14.30	2 E-18 1.10 292 12.20
	2 0.90 251 16.76	I WP-14 " " " " " 1.00 259 " 14.20	1 0.70 508 20.20
2 7-9	1 E-11 " " " " " 1.10 235 " 14.60		3 E-17 " " " " 0.90 347 " V6.80
<u>2 E-10 " " " " " 1.30 207 " 11.20</u>	2	1 WR15	
/	1 E-12		<u>2</u> 0.96 364 15.30
2 E-9 " " " " " 180 " "		1 G-16	2 F-18 0.70 564 20.20
3 E-10 " " " " " " " " " " " " " " " " " " "		/ G-15 ,, , , , , , , 0.96 358 , 15.20	<u>3 E-18 " " " " " 415 " "</u>
	<u>3</u> F-12 " " " " " " " " 9.12	1 F-15	1 D-17
		2 G-16 0.85 699 17.00	2 D-18 " " " " " " 1.30 313 " 11.20
	2 F-11 0.957 284 15.25	2 G-15	1
	1 1.30 282 11.20	2 F-16	3 D-17 " " " " " " " " " " 4.60
/	1 F-12 0.957 247 15.25		
2 D-9 1.30 205 1420	2 G-12 ,, , , , , , , , , , , , , , , , , ,		2 0.85 407 17.00
3		<u>3</u> F-15	<u>3</u> D-18 0.70 474 20.20
3 E-9		2	/ C-17 " " " " " " 073 554 " /9.95
		3 F-16 0.67 401 21.70	2 C-18
	<u> </u>	I E-15	3 C-17 0.487 981 29.97
<u> </u>	12 M.P 1.33 164 10.20	2 E-16	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2 C-10 " " " " " " 1.20 227 " 12.15	11	<u> </u>	
/ 0.957 289 . 15.25	<u>I C-14</u>		<u> </u>
<u>3</u> C-9 0.85 390 17.03		<u>3 E-15</u>	3 0.73 358 19.95
2		2 0.90 283 16.70	I B-17 I.20 256 12.20
<u>3</u> C-10 0.514 580		<u>3 E-16</u>	1 B-18 ,, , , , , , , , , , , , , , , , , 40 258 , , 10.20
		1 0-15 1.10 264	2
kedriven		2 D-16	3 B-17
1 B-9 5000/bs. 60'-6" /6" 9" 60.5' 35" 1.30" 249 115.5± 1.20 2 B-10 " " " 60.5' 35" 1.30" 249 115.5± 1.20	1 A-13 1.43 185 10.20	/	7 R_10 /02
	1 A-14	3 D-15	<u>2</u> B-17
<u> </u>	<u>3</u> B-14 1.10 263 14.60	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
<u>3</u> <u>8</u> -9 <u>.</u>	<u>3</u> B-13 " " " " " " "		<u> 1 A-17</u>
1 B-10	<u>I C-14</u>	<u>3 D-16 " " " " " " 0.70 442 " 20.20</u>	1 A-18 " " " " " 146 " "
2 B-9			2 9.20
2 A-9			2 A-17
		3 0.85 438 17.00	18 EP 1.80 134 7.80
	2 C-14 0.957 501 15.25		17
	3 0.90 442 16.76		2 A-19
/ A-9 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,			
10 EP			<u> </u>
9	2		19 EP
1 A-11 1.43 207 10.20			3 8-19 408
1 A-12	политичности политичнос	2	/
	<u>2</u> B-14 5000/bs. 60'-6" 16" 9" 60.5' 35" 1.30" 396 11.20	1 B-15 0.92 284 14.30	2
	<u> </u>		<u>3</u> C-19 0.96 330 15.30
	<u>3 D-13 u u u u u u 167 u u</u>	/	<u> </u>
11 EP 0.671 /57	2 D-14	3 8 15	
12	3		
<u>3</u> B-11 1.20 245	1 D-13		I B-19 Redriven
2 8-12			<u>3</u> D-19 5000 /bs. 60'-6" 16" 9" 60.5' 35" 0.90 384 115.5± 16.80
3		1 A-15	/ 0.58 535 19.00
2 8-11	<u>2</u> D-13 1.43 176 10.20	1 A-16	2 0.50 739 30.00
	<u>3 E-13</u>	2 A-15 ·	3 E-19 0.73 485 19.95
/ 0.85 283 17.03	2 E-14	2 A-16	
<u>/ B-12 0.90 294</u>			<u>/ " " " " " " " " 0.90 390 " 16.80</u>
3 6-11	<u> </u>		2
2 C-12			3 F-19 0.70 440 20.20
/		18 WP " " " " " 0.60 421 " 24.30	/
1 C-11			2 0.70 501 20.20
	<u>3 E-13 " " " " 0.85 293 " 15.30</u>		2 6-19 0.75 358 19.05
		17 WP 0.65 457 22.60	1 0.65 476
3 C-12 " " " " " " 1.10 211 " 14.60	3 0.92 256 14.30		10 1110 067 467 2180
			19 WP " " " " " " " " " " " " " " " " " "

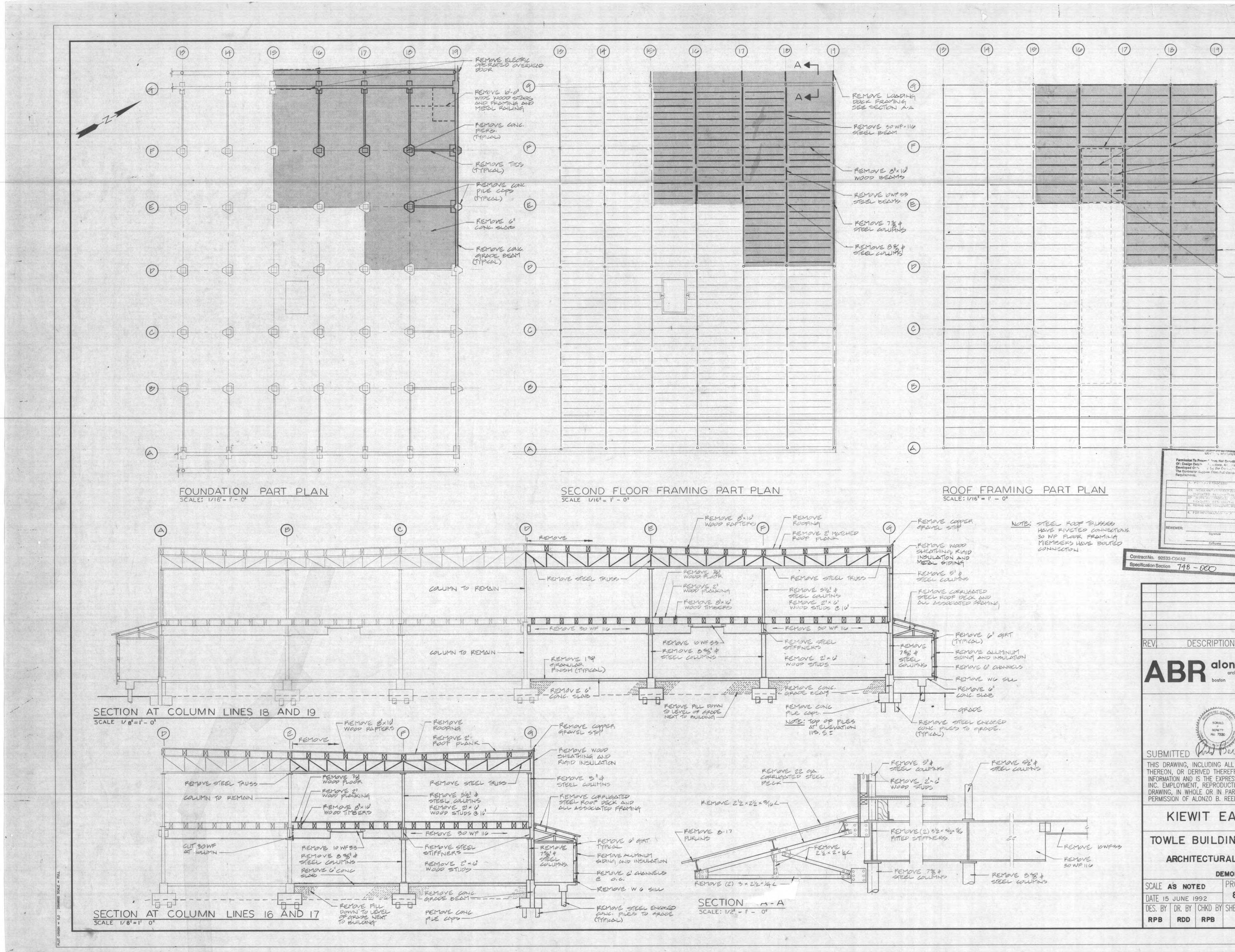

-

·			
Drawn By <i>HFB.</i> Traced By Checked By Supervised By In Charge		dock IL <mark>DIN</mark> G	BOSTON, MASS. SO. BOSTON NO. 19 STOREHOUSE
Sheet 2 of 2		FRECO	RD PLAN
PW Drawing No.	Approved		942
981-19-4		P	Public Works Officer

Public Works Officer

1


Copied from Pile Record Cards March & April 1941


	1
4	
	1

				NEW SBIR		
\bigcirc	0	3 9 IB B		405'-0" (2)	3	(4)
-1				<u>, i r 6</u> .		
· ·			o			1 2
						NTRIES
VENT	- REMOVE					
	BUNPER			$\begin{vmatrix} 1 & 1 & 1 \\ 1 & - & 1 & 1 \\ 1 & - & 1 & 1 \end{vmatrix}$		RE
IPER - X						- EL
2 EHCLOSURE		D" WIDE × 8-0" HIGH DOLBL	E LEGRESS			I RE
E LOCATED AS THE FLOOR OP NG EQUIPMENT OW - JOG. WALL	HA COMPLETE EACH FL	ELEVATOR ENTRANCE DOOR E WITH INTERLOCK TYPICAL A DOR. DOOR ON FIRST FOO DE ANCHORED TO EXISTING	AT NOTES BE	$\begin{bmatrix} av & 1 \\ 1 & 1 \end{bmatrix}$		AR
HEVATOR ND HGH MAINTI	EQ 1 1 Marson R	HALL BE ANCHORED TO THALL BE ANCHORED TO TETEL ANGLE FRAMING	f			
	AT LIFT ANGLE PEOVIDE	FRAMINE SHALL BE	1			
				• <u>·</u> , , <u> </u>	· · · · · · · · ·	
			STAIR D	FAIR No. 2 R METAL OWN TO	EXTE	V STAIR No. 4 ERIOR METAL S T FLOOR TO SEA DING TO BUTI A COLUMN - LIN
	\overline{O}	3 9 405L	GRADE	DE	B	COLUMN - HIN
		- Y		NEW STE SIDING AT ENCLOSE	EL STUD WALL COLUMNS 10 0 LODDING POC	WITH METAL ND II TO K
		CUT OPENING IN EXISTING WOOD		- REMOVE LOAD	ING POCK WALL	- AND
		STUP EXTERIOR WALL FOR NEW METAL BOOR # FRAME		- FOR NEW STO	EN COLUMNS 10 NR - LOSPING ETS AT COLUMN	DOCK
				RELOCATED	EXIST. ROOF 1-	HATCH-
0						
PLATFORM	•		•	• •		•
ANDING						
\$ ' T			DULAR OFFIC			
- • *		1 2 HOUR FIRE RATED ME		• • •	•	•
	ELE EXI- EXI-	TITION BETWEEN MACHI VATOR SHAFT. ALIGN PAR STING STUD SOFFIT. FIRE 20 SHALL EXTEND OVER	RATED GYSLIM			
	COL PART	TO COMPLETELY SEPARA 2 HOUR FIRE RATED CON COL AT EACH FREIGHT EI	TE THE AREAS ISTRUCTION. EVATOR			
NOTE: ALL L	EDGES AND PROJ	ECTION INTO THE	LEGBESS Z	ONE-6-0" "	<u> </u>	<u>}</u>
ELEVATOR SHALL BE	SHAFTS GREAT	ER THAN Z" BEVELED GUARDS	AND 45° D	OW BORDER	NOTE: PROVI	
			DO NOT OF	AT'2'-0' O.C. GRESS ZONE STRUCT" C DUMN BAY	RISER PIPING	WHERE
- JOG WALL	L AT NEW SPRIN PING & VALVES	KLER	FLOOKS.			
	NKLER ROOM NO,				SPRINKLER	ROOM NO, 2-
SEE SEE	TYPICAL RENOVATI SPRINKLER ROOM	ON NOTES		<u>Б</u> Б		
				NCRETE AT FLOR PIPING - PATCH		
*			*	• Bo	SULATION BET	NEW R-11
				5	IUDS AND FINIS	A WI GYPSUM

. . .

	1
ARE SCHEDULE	
E FABRICATED IN ACCORDANCE 100 STANDARD STEEL DOORS	
DWARE SHALL BE FABRICATED 24 80.	
FULSH DOORS	
MINUM FRAME SOREFRONT OF TRANSOM SHALL BE 9'-6" IG FRAMING, ADDITIONAL JAMBS PER DOOR MANIJFACTURERS I"TEMPERED WIRE GLASS.	
HE FOLLOWING HARDWARE.	
CEN "PAL ARTERY/TUNNEL Ission To Proceed Oces Not Constitute Acceptance Or Approval beign Details, Cale astort, Analysis, Test Methods Or Materials oped Or Selector Grade The Tontractor/Supplier And Does Not Relieve contractor/Supplies From Fuil Compliance With Contractual rements. 1. WORK MAY PROCEED 2N. WORK MAY PROCEED SUBJECT TO THE CHANGES INDICATED RESUBATION, AND REQUIRED. 2R. WORK MAY PROCEED SUBJECT TO THE CHANGES INDICATED. RESUBMITIAL ACCOURTED. 3. REVISE AND RESUBMITIAL ACCOURT.	
Signature Date Company	
and a second	
S 15,16, AND 17	
NIDE × 7-0" HIGH DOOR AND FRAME	
AIR HINGES CHSET	
DRSTOP	
CONSTRUCTED OF 31/211 FIRE-RATED GYPSUM AGERED AND ALL OPENINGS, FIRE-RATED SEALANT, FOR 2 HOUR FIRE-RATED	
OCCUPANCY	
	-
	1.
-000 Paragraph 748,60 C	
CRIPTION BY BY BY DATE	
alonzo b. reed, inc	
architects — engineers — planners boston massachusetts	
ROMALD BORITTI No. 7320	
UDING ALL SUBJECT MATTERS INDICATED ED THEREFROM, COMPRISES PROPRIETARY THE EXPRESS PROPERTY OF ALONZO B. REED REPRODUCTION OR DISSEMINATION OF THIS OR IN PART, WITHOUT THE PRIOR WRITTEN VZO B. REED, INC., IS STRICTLY FORBIDDEN.	
T EASTERN CO.	
	-
ILDING RENOVATIONS	
FLOOR PLANS	
ARCHITECTURAL	
PROJECT NO. DRAWING NO. 850-1	
KD BY SHEET 2 OF 9 A-I	
	BI9
ZZABROOE.	2 0F9

(19) REMOVE SKT WALL CONFIRE WOOD STUDS, I SHEATHING AND SIDING REMOVE C'X12" SKYLIGHT FRAMING - REMOVE 5'2 & STEEL COLUMNS. - REMOVE 6 × 6" SKYLIGHT FRAMING - REMOVE 8"×16" WOOD ROFTERS REMOVE CORRHEATED SKT-LIGHT GLAZING - REMOVE 5" 4 STEEL COLUMNS - REMOVE STEEL TRUSSES - REMOVE SKYLIGHT WOOD ROOF DECK AND ROOFING ハルキー ME 00 14/092 DN Deen with CENT ANT AVITUNNEL Permission To Proceed Trats Not Constitute Acceptance Or Approval Of : Design Details Tratsform, America, Test Methods Or Materials Developed Of Surgitive Trans Full Computer Supplier And Does Not Relieve The Contractor Supplier From Full Computers with Contractual Benuirements TO THE CHANGES WORK HE SROCKET THE KE 3. REVISE AND REBUBILT, WOR CHAY NOT PROCEED FOR INFORMATION Submittal OOLB Paragraph 748,60 DR CKD APPD DAT DESCRIPTION alonzo b. reed, inc architects engineers - planners massachusetts JOHN D. ROWALD CROWLEY No. 21804 BORETT SUBJECT PROPRIETARY INFORMATION AND IS THE EXPRESS PROPERTY OF ALONZO B. REEL INC. EMPLOYMENT, REPRODUCTION OR DISSEMINATION OF THIS DRAWING, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN PERMISSION OF ALONZO B. REED, INC., IS STRICTLY FORBIDDEN. KIEWIT EASTERN CO. TOWLE BUILDING RENOVATIONS **ARCHITECTURAL/STRUCTURAL** DEMOLITION PROJECT NO. DRAWING NO. 850-1 DES. BY DR. BY CHKD BY SHEET 1 OF 9 U-ZZABROOE.DWG B19 1 99

APPENDIX C

Previous Explorations by Others

	-		ch, Inc.	_		_	_	TEST	BORING SB2-70 OW				
CL	IENT	: MA		IUSI	ETT	IS DE	PAR	TMENT C	ECT, BOS)F PUBLI			CONTRACT : 89374 SHEET NO. : 1 of 5 LOCATION N: 2951487	
GRO	OUNDWA	TER	DE	PTH	(ft)	OF:		EQUIPMENT	CASING	SAMPLER	CORE	E : 781395 ELEVATION : 110.3	
Date	Т	ime	Water	Ca	sing	Ho	le	Туре	HW/NW	S	NV-2	DATE START: 13-3-90	
03-14	-90 0	630	7.0	1	2.0	12	.0	Size I.D.:	4ª/3ª	1 3/8"	2"	END : 26-3-90	
	-90 0		4.5	2	0.0	_	.0	Hammer Wt.	: 300#	140#		DRILLER : B. Wordell	
03-23	-90 0	600	11.65	10	4.0	114	.0	Hammer Fal	l: 24"	30"		INSPECTOR : C. Nowak	
Depth in Feet	Strat Chang	e (Drill	Sampler Blows)Per 6" t)(RQD%)	Samo	er/	Sample Depth Range (ft)	Samp Reco ery (in)	v- ation/ Depth	F	TELD C	CLASSIF	FICATION AND REMARKS	
T			16 14 9 9	S1		0.5 2.5	12	······································	Dry, mec SAI silt.	lium der ND, littl	-BITUM nse, bro e fine g	INOUS ASPHALT- wn black COARSE TO FINE gravel, cinder particles, trace clay	
			-	Ĩ.				106.3 4.0		-	-MISCE	ELLANEOUS FILL-	
5 -			85	S2		5.0 7.0	12	103.3	Wet, med trac	ium stif e brick		SILT and fine sand, some clay, s, peat. DHESIVE FILL-	
						Ē		7.0					
10 —			3 3 1 1	S3		10.0 12.0	11		Wet, loos clay			AND, trace shell fragments, peat ANULAR FILL-	
								97.8 12.5					
15 -			2246	S4		15.0 17.0	п		Wet, med sand	ium stif 1, trace		black CLAY and silt, some fine hell fragments. DHESIVE FILL-	
20 —			2334	S 5		20.0 22.0	18	-	Wet, med occa	ium stif isional p		CLAY and silt, trace fine sand i	
			-					86.8 23.5			-ORG	ANIC DEPOSITS-	
-	IS/FT.	DEN	ISITY	BL	.OWS	/FT.	CON	SISTENCY	SAMPLE	DENTIFIC	ATION	SUMMARY	
0-	4 10 30	Very Lo Mediu	Loose bose m Dense		0- 2- 4- 8-1	2 4 8	Ve Med	ry Soft Soft ium Stiff Stiff	- s - s - T - T - U - U	plit Spoo hin Wall ndisturbe iamond Co	n Tube d Piston	Overburden: 103.0' Rock: 11.0' Samples: S20 C2	
50			Dense		15-	30		ry Stiff Hard	8 - W - W	ash Sampl ee Remark	e	BORING SB2-70 OW	

PR(CLI	DJEC	: MAS	SSACE	IUSI	TE	TS DE	PARTM	IENT (ECT, BOSTON MA DF PUBLIC WORKS	CONTRACT : 89374 SHEET NO. : 2 of 5
Depth in Feet	Strata Change	Case BPF (Drill) (min/ft)	Sampler Blows Per 6" (RQD%)	Samo	er/	Sample Depth Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	FIELD CLASSI	FICATION AND REMARKS
			4223	S6		25.0 27.0	11"		Wet, soft, gray ORGAN gravel, fine sand, s PP = 0.5 TSF.	IC SILT, little clay, trace fine shell fragments, peat.
- 30 —			2 1 2 3	\$7		30.0 32.0	24"	76.0	PP = 1.5 TSF. -ORG	IC SILT and clay, trace shell
35 —			4 5 10 18	S8		35.0 37.0	20"	76.8 33.5	and the state and the	AY and silt, trace shell fragments,
40 —			12 13 15 16	<u>\$9</u>		40.0 42.0	22"			ray CLAY and silt, trace peat, fine partings. RINE DEPOSITS-
15 —			5546	S10		45.0 47.0	4"		Wet, stiff, gray CLAY an PP < 0.25 TSF.	nd silt.
60 —			33346	511		50.0 52.0	24"		Wet, medium stiff, gray, fine gravel. NOTE: concretion found	laminated CLAY and silt, trace in sample.
BLOWS	;/FT.	DENS	ΙΤΥ	BL	OWS,	/FT.	CONSIS	TENCY	SAMPLE IDENTIFICATION	SUMMARY
0-4 4-1 10-3 30-5 50+	0 0 0	Very L Loos Medium Dens Very D	se Dense se		0-2 2-4 4-8 8-1	4 3 5	Very Sof Medium Sti Very S	t Stiff	- S - Split Spoon - T - Thin Wall Tube - U - Undisturbed Piston - C - Diamond Core - W - Wash Sample - See Remarks	Overburden: 103.0' Rock: 11.0' Samples: S20 C2

-

		SSACH	USE					ECT, BOSTON MA	BORING SB2-70 OW CONTRACT : 89374 SHEET NO. : 3 of 5
epth Stra in Char Feet	ta BPF nge (Drill (min/fi	Sampler Blows)Per 6" t)(RQD%)	Sampl Numbe Type	le er/	Sample Depth Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	FIELD CLASSIF	FICATION AND REMARKS
		3 4 4 5	NR		55.0 57.0	0"		No recovery.	
60 -		4 5 5 6	S 12		60.0 62.0	18"		Wet, stiff, gray CLAY a PP = 0.25 TSF. -MAI	nd silt. RINE DEPOSITS-
65 —		4456	S13		65.0 67.0	24"		Wet, stiff, gray CLAY a PP = 0.75 TSF.	
70 —		- - - - - - - - - - - - - - - - - - -	S14		70.0 72.0	24"		DO. except trace fine gra	avel.
75 —		WOR 4 4 6	<u>S15</u>		75.0 77.0	24"		Wet, stiff, gray CLAY as PP = 0.5 TSF.	nd silt.
80 –		2 3 4 4	516		80.0 82.0	24"		DO. except medium stiff	
BLOWS/F1	. DEN	ISITY	BL	OWS	/FT.	CONSIS	TENCY	SAMPLE IDENTIFICATION	SUMMARY
0-4 4-10 10-30 30-50 50+	Lo Mediu De	Loose bose m Dense ense Dense		0- 2- 4- 8-1 15- 30	4 8 15 30	Very So Medium Sti Very Ha	ft Stiff ff Stiff	- S - Split Spoon - T - Thin Wall Tube - U - Undisturbed Piston - C - Diamond Core - W - Wash Sample - See Remarks	Overburden: 103.0' Rock: 11.0' Samples: S20 C2 BORING SB2-70 OW

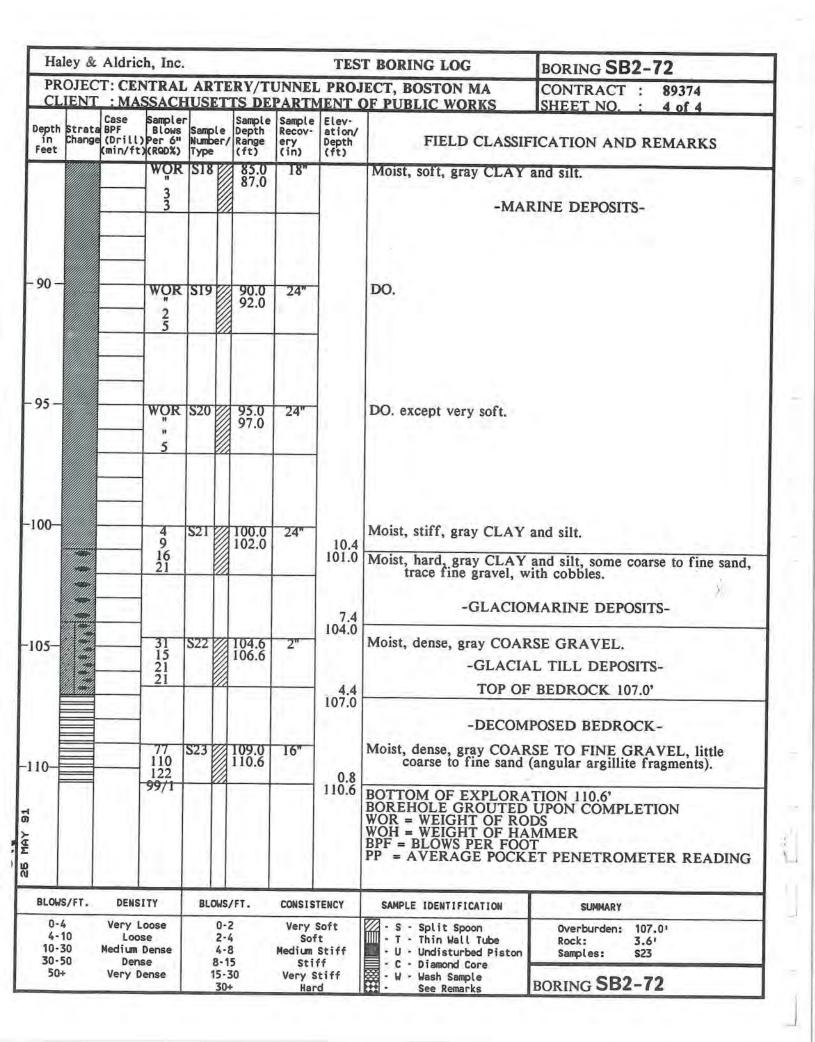
PR	OJEC	T: CEN	TRAL	AR	TE	RY/T	UNNEL	PROJ	ECT, BOSTON MA	BORING SB2-70 OW CONTRACT : 89374
CL	IENT	: MA	SSACE	USI	ET	TS DE	PARTN	IENT (OF PUBLIC WORKS	SHEET NO. : 4 of 5
Depth in Feet	Strat Chang	e (Drill)	Sampler Blows Per 6")(RQD%)	Sam	ole ber/	Sample Depth Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	FIELD CLASSIF	FICATION AND REMARKS
			WOR	S17		85.0 87.0	24"		Wet, medium stiff, gray $PP = 0.5$ TSF.	CLAY and silt.
			6	-						
90 -			WOR	S18		90.0	24"		DO. except stiff.	
			5 4 5			92.0				
									-MAF	RINE DEPOSITS-
95 -			WOR 26 37	S19		95.0 97.0	24"	14.3 96.0	Wet, very soft, gray CLA laminae. PP = 0.5 TSF.	Y and silt, trace silt in occasional
			37						Wet, hard, gray SILT, son sand, clay.	me fine gravel, little coarse to fine
100-			70	870		100.0	1.50	10.3		MARINE DEPOSITS-
			61 54 48	520		100.0 102.0	13"	100.0	sand, some silt, littl	NE GRAVEL and coarse to fine le clay. AL TILL DEPOSITS-
				U		1.1		7.3 103.0	TOP OF	BEDROCK 103.0'
105—		6 6 5 6 7	100/0* 24%	NR Cl		104.0 104.0 104.1 109.0	0" 41"		No recovery. Moderately hard, slightly gray, aphanitic ARG dipping at 45 degre planar, dipping para surfaces generally f frequent calcite coa vertical joints.	weathered, moderately fractured, GILLITE. Bedding very thin, es. Joints close, tight, smooth, allel to bedding planes. Joint resh, occasionally oxidized, with ted joints. Occasional high angle t
110-		7 6 6	44%	C2		109.0 114.0	54"		DO. -CAMBRI	DGE FORMATION-
		6 6						-3.7 114.0	POTTOM OF FYRIDS -	TION 114 0
-	IS/FT.	DENS	ITY	PI	OUS	/FT.	CONSIS		BOTTOM OF EXPLORA	
0- 4- 10-	4 10 30	Very L Loo Medium	.oose se	BL	0	2	Very Sof Medium	Soft	SAMPLE IDENTIFICATION - S - Split Spoon - T - Thin Wall Tube - U - Undisturbed Piston	SUMMARY Overburden: 103.0' Rock: 11.0' Samples: S20 C2
30- 50		Den Very D			8-1 15-3 30-	30	Sti Very S Har	tiff	- C - Diamond Core - W - Wash Sample - See Remarks	BORING SB2-70 OW

P

0

ĩ

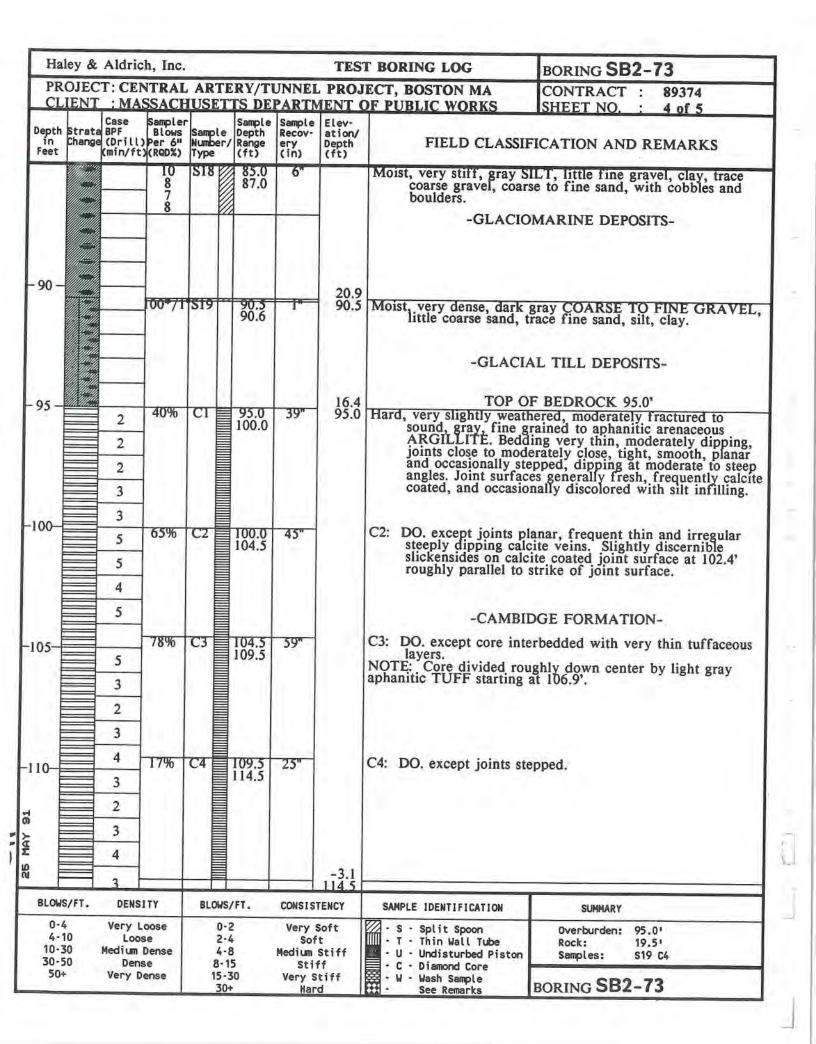
1


Hal	ey &	Aldric	h, Inc.		_		TES	T BORING LOG	BORING SB2-70 OW		
PRO	OJEC	T: CEN	TRAL	ART	ERY/T	UNNEL	PROJ	ECT, BOSTON MA	CONTRACT : 89374		
CLI	ENT			1	1			OF PUBLIC WORKS	SHEET NO. : 5 of 5		
Depth in Feet	Strata Change	Case BPF (Drill) (min/ft)	Sampler Blows Per 6" (RQD%)	Sample	Sample Depth Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	FIELD CLASSIF	FICATION AND REMARKS		
								PNEUMATIC/VIBRATI	OT Y DESIGNATION ET PENETROMETER READING NG WIRE PIEZOMETER		
BLOWS	S/FT.	DENS	ITY	BLO	JS/FT.	CONSIS	TENCY	SAMPLE IDENTIFICATION	SUMMARY		
0-4 4-1 10-3 30-5	10 30	Very L Loos Medium	se Dense	2	0-2 2-4 4-8	Very Son Medium	ft Stiff	- S - Split Spoon - T - Thin Wall Tube - U - Undisturbed Piston	Overburden: 103.0' Rock: 11.0' Samples: \$20 C2		
	00	Den	ense		- 15			- C - Diamond Core - W - Wash Sample - See Remarks			

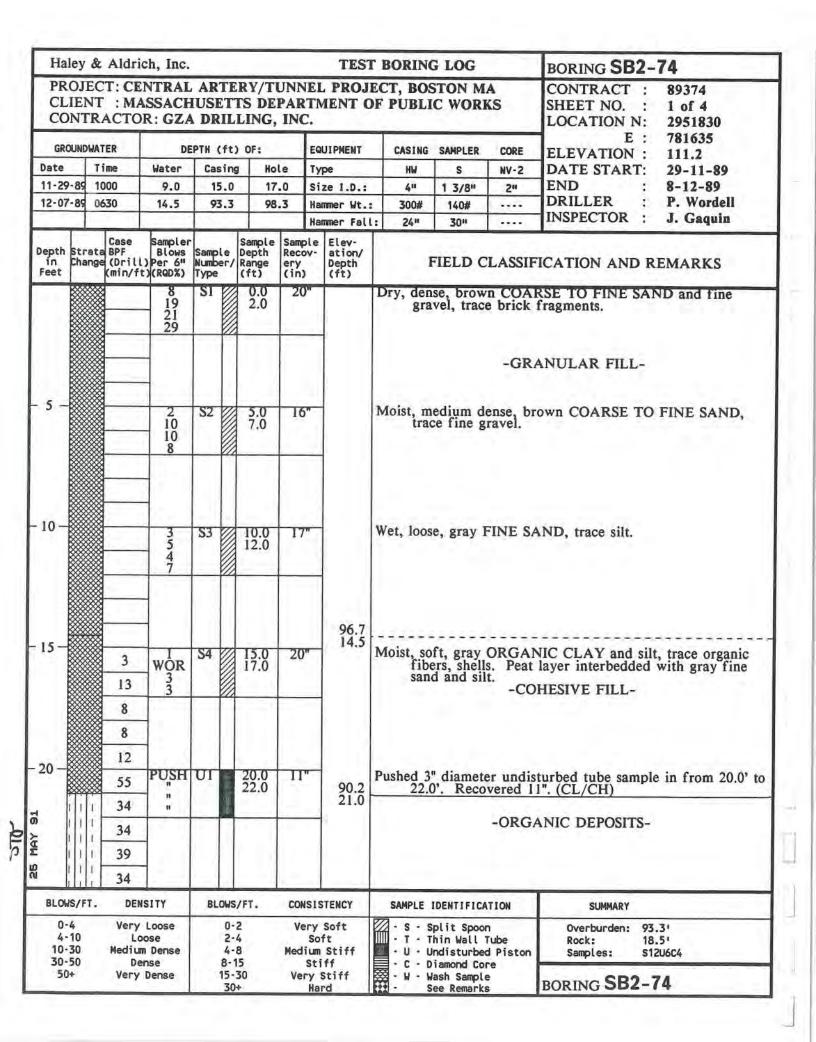
STV

Ha	ley &	Aldrie	ch, Inc.	-				TEST	F BORING	G LOG		BORING SB2-	72
CL	IENT	: MA	NTRAL SSACE R: GZA	IUS	ETT	IS DE	PART	L PROJ MENT C	ECT, BOS OF PUBLI	STON M. C WORI	A KS	CONTRACT : 89374 SHEET NO. : 1 of 4 LOCATION N: 2951756	
GRO		TER	DE	PTH	(ft)	OF:	E	QUIPMENT	CASING	SAMPLER	CORE	E : ELEVATION :	781414 111.4
Date		ime	Water	Ca	sing	Ho	le T	уре	HW	S		DATE START:	14-11-89
-	NC RI	EADING	1	-		4		ize 1.D.: ammer Wt.:	4"	1 3/8"		END : DRILLER :	15-11-89 P. Wordell
					-	1		ammer Fall	10 0 C M	140# 30"		INSPECTOR :	J. Gaquin
	Strata Change	(Drill	Sampler Blows)Per 6" (RQD%)	Samp	ber/	Sample Depth Range (ft)	Sample Recovery (in)		1	FIELD C	LASSIF	ICATION AND R	EMARKS
			8 18 24 32	SI		0.3 2.3	18"	110:3	Dry, den fin	se, gray e gravel,	BITUM COARS trace c	IINOUS ASPHALT SE TO FINE SANI inders, brick.	D and silt, some
									_		-GR	ANULAR FILL-	
5 -			15 8 9 10	S2		5.0 7.0	18"		Moist, m silt.	edium de	ense, gr	ay COARSE TO F	INE SAND and
100000								102.9 8.5			22253		
0 -			1 2 1 2	S 3		10.0 12.0	18"	-	Moist, so par	ft, gray tings.		and silt, trace fine HESIVE FILL-	sand in freque
5-		4	WOH	S4		15.0 17.0	20"	-	Moist, ve orga part	ry soft, j anic fibe tings.	gray OF rs, fine	GANIC CLAY an gravel, fine sand i	d silt, trace n occasional
		8											
)-		10 8 22	3 4 5 7	\$5		20.0 22.0	I.		Moist, sti fine	ff, gray gravel,	CLAY organic	and silt, trace coar fibers.	se to fine sand,
		23			11								
		20						87.9 23.5					
		21				1		23.5			-ORG	ANIC DEPOSITS-	
BLOW	S/FT.	DEN	SITY	BL	.OWS/	/FT.	CONSI	STENCY	SAMPLE I	DENTIFICA	TION	SUMMARY	
0- 4- 10- 30-	10 30	Lou Medium	Loose ose Dense nse		0-2 2-4 4-8 8-1	3	Mediu	Soft oft n Stiff iff	- T - T - U - U	plit Spoor hin Wall T ndisturbed	ube Piston	Overburden: 107 Rock: 3.0 Samples: \$23	
50		Very			15-3	0	Very	04266	- C - Diamond Core - W - Wash Sample - See Remarks		BORING SB2-7	22	

	-		h, Inc.		TE	RY/T	UNNET		T BORING LOG ECT, BOSTON MA	BORING SB2-72 CONTRACT : 89374
CL	ENT	: MA	SSACH	USI	ET	TS DE	PARTN	IENT (OF PUBLIC WORKS	SHEET NO. : 2 of 4
Depth in Feet	Strata Change	Case BPF (Drill) (min/ft	Sampler Blows Per 6")(RQD%)	Samp Numb Type	ole ber/	Sample Depth Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	FIELD CLASSIF	FICATION AND REMARKS
		16	wOH	S6	-	25.0 27.0	18"		Moist, very soft, gray Ol	RGANIC SILT, little fine sand, c fibers.
		28							made sitens, organit	. 11/013.
		27			ſ		1		-ORG	ANIC DEPOSITS-
		28								
20	111	29		-		_	1.1		the second s	
- 30		19	WOH	\$7		30.0 32.0	20"	1	DO.	
		26	1 2				101			
		26				100.00		78.4	and a second second second	
	342	35						78.4 33.0		
- 35 -	382	42	1					-		ANIC DEPOSITS-
55		41	34	S8		35.0 37.0	22"	75.9 35.5	Moist, soft, brown PEAT Moist, stiff, gray CLAY	and silt
		62	8 11	_		144				
		69								
									-MAR	RINE DEPOSITS-
40 -			8	59		40.0	23"		Moist very stiff vellow	gray mottled CLAV and silt trace
			8	39		42.0	25		fine gravel, fine sar	gray, mottled CLAY and silt, trace in occasional partings.
			12 13		1					
45-			4	510		45.0	24"		Moist, stiff, yellow gray,	mottled CLAY and silt, trace fine occasional partings.
			4466	1		45.0 47.0			gravel, fine sand in	occasional partings.
			6	1	1	5-31				
						111				
50 -			2	STI		50.0 52.0	24"		Moist, medium stiff, gray	CLAY and silt, trace fine sand in
			2233			52.0			occasional partings.	
5			3		1		-			
								-		
BLOW	S/FT.	DENS	TTY	BL	OWS.	/FT.	CONSIS	TENCY	SAMPLE IDENTIFICATION	SUMMARY
0-4	-	Very I			0-		Very		- S - Split Spoon	Overburden: 107.0'
10-3	30	Medium	Dense		2-1	В	Medium	Stiff	- T - Thin Wall Tube - U - Undisturbed Piston	Rock: 3.6' Samples: S23
50-5		Den Very (8-1 15-1 30-	30	Sti Very S Har	stiff	- C - Diamond Core	BORING SB2-72


Hal	ley &	Aldric	h, Inc.				_	TES	T BORING LOG	BORING SB2-72
									IECT, BOSTON MA OF PUBLIC WORKS	CONTRACT : 89374 SHEET NO. : 3 of 4
	Strata		Sampler Blows Per 6"		le er/			Elev- ation/ Depth (ft)		ISHEET NO. : 3 of 4 IFICATION AND REMARKS
			33335	S12		55.0 57.0	20"		Moist, medium stiff, g	ray CLAY and silt.
			-						-M/	ARINE DEPOSITS-
60 -	-		2335	S13		60.0 62.0	18"		DO.	
65 —			2 2 3 5	S14		65.0 67.0	21"		Moist, medium stiff, g occasional parting	ray CLAY and silt, trace fine sand i 35.
70 —			WOR 2 3 5	<u>S15</u>		70.0 72.0	24"		DO.	
75 —			WOR 2 6 5	516		75.0 77.0	24"		DO.	
80 —	-		WOR 2 3 5	<u>517</u>		80.0 82.0	23"		DO.	
								1		
0-	10	DENS Very L Loo Medium	Loose	BL	0WS	4	CONSIS Very So Medium	Soft ft	SAMPLE IDENTIFICATION - S - Split Spoon - T - Thin Wall Tube - U - Undisturbed Pisto	SUMMARY Overburden: 107.0' Rock: 3.6' Samples: \$23

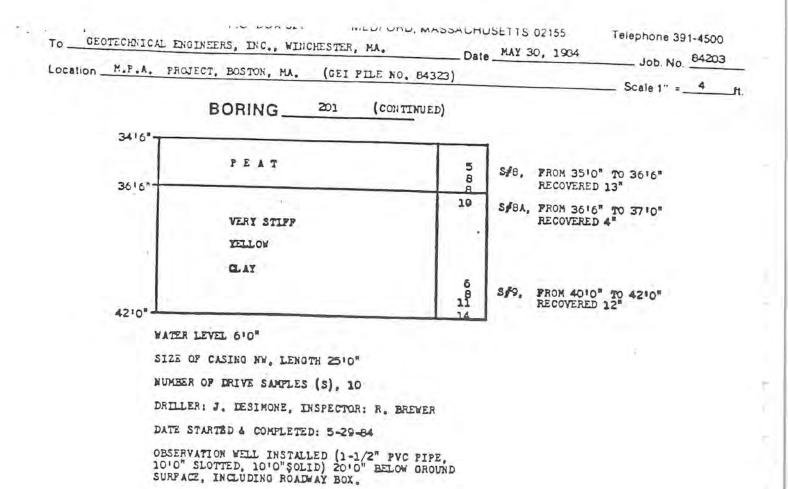
-	-	-	h, Inc.		TF	RV/T	IINN		JECT, BO		IA	BORING SB2-73 CONTRACT : 89374	
CL	IENT	: MA	SSACE R: GZA	IUSI	ET	TS DE	PAR	FMENT	OF PUBI	IC WOR	KS	SHEET NO. : 1 of 5 LOCATION N: 2951847	
GRO	UNDWAT	ER	DE	PTH	(ft)	OF:		EQUIPMENT	CASIN	G SAMPLER	CORE	E : 781477 ELEVATION : 111.4	
Date	T	ime	Water	Ca	sing	Ho	le	Туре	HW/NU	S	NV-2	DATE START: 15-11-89	
11-17	-89 00	505	14.9	3	8.0	80	-	Size I.D.:		1 3/8"	2"	END : 18-11-89	
-	-			-		-	-	Hammer Wt. Hammer Fal		140#		DRILLER : P. Wordell INSPECTOR : J. Gaguin	
Depth in Feet	Strata Change	(Drill'	Sampler Blows Per 6")(RQD%)	Samp	er/	Sample Depth Range (ft)	Sampl Recov ery (in)	e Elev-	T	30" FIELD (CLASSI	FICATION AND REMARKS	
			16	SI		0.3	16	1 111 1	Drv. de	nse brow	n COA	MINOUS ASPHALT- RSE TO FINE SAND and silt, tr	
			26			2.5			NOTE:	nders, br Auger re	ick, fibe efusal o	n probable steel obstruction at 4.	
			1				-				-GR	ANULAR FILL-	
- 5 -			6 4	S2		5.0 7.0	9"		Dry, loo				
		_	4			7.0		5.5	Moist, 1	nedium s casional j	tiff, gra partings	y CLAY and silt, little fine sand and layers.	
											-CC	DHESIVE FILL-	
10 -			1	S 3		10.0	12"		DO. exc	ept very	soft.		
			WOR 1			12.0							
15-		4	wor	S 4		15.0 17.0	22"		DO. exc	ept medi casional p	um stiff ockets.	, trace fine gravel, fine sand in	
00000		7 8	6										
		8 10											
20-		8	12	S 5		20.0 22.0	11"		DO. exc	ept soft,	trace or	ganic silt.	
		22	2222			22.0	ſ.						
		23											
		20 21	-										
BLOWS	S/FT.	DENS	ITY	BLO	OWS/	FT.	CONS	ISTENCY	SAMPLE	IDENTIFICA	TION	SUMMARY	
0-4 4-1 10-3 30-5	0	Very L Loo Medium	se Dense		0-2	3	Mediu	y Soft Soft Im Stiff	- T -	Split Spoo Thin Wall Undisturbe	Tube d Piston	Overburden: 95.0' Rock: 19.5' Samples: S19 C4	
50+		Dens	Dense ery Dense		8-1 15-3 30+	0	Very	tiff Stiff lard	- C - Diamond Core - W - Wash Sample - See Remarks			BORING SB2-73	


CL	IENT	: MAS	SACE	IUSI	ETT	S DE	PARTM	IENT C	ECT, BOSTON MA DF PUBLIC WORKS	CONTRACT : 89374 SHEET NO. : 2 of 5
Depth in Feet	Strat. Change	Case BPF (Drill) (min/ft)	Sampler Blows Per 6" (RQD%)	Samp Numb Type	le er/	Sample Depth Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	FIELD CLASSI	FICATION AND REMARKS
		16	54	S6		25.0 27.0	4"		Wet, medium stiff, gray	CLAY and silt, little fine gravel.
		28	32		0				-00	OHESIVE FILL-
		27		1				83.4 28.0		
		28						28.0	1	
- 30 -		29								
50	111	19	8225	S7		30.0 32.0	4"		fragments.	NIC SILT, trace clay, shell
		26	2 5						1	ANIC DEPOSITS-
		26						78.9 32.5		
		35								
-35-		32	7	00		35.0	24"		Moist, very stiff, gray C	I AV and silt
		41	9	58		35.0 37.0	24		moist, very suir, gray C	
		62	9 14	-				1	-MAI	RINE DEPOSITS-
		69								
40 -			6	59		40.0	24"		DO. except stiff.	
			0580		0	42.0			n construction	
			9	-	1					
45 -			5	S10		45.0 47.0	24"		DO. except trace fine same	nd in occasional partings.
		1	2560			47.0				
			,		1					
50			11.1						22 Section and the	
50 -			4	SII		50.0 52.0	24"		DO, except no fine sand.	
			68							
:										
BLOW	S/FT.	DENS	ITY	RI	OWS,	/FT	CONSIS	TENCY	SAMPLE IDENTIFICATION	CIMMARY
0-		Very L		BL	0-2		Very		- S - Split Spoon	SUMMARY Overburden: 95.0'
4- 10-	30	Loo: Medium	se		2-4		Sot	ft	• T • Thin Wall Tube • U • Undisturbed Piston	Rock: 19.5'
30- 50		Den: Very D			8-1	5	Sti Very S	ff	- C - Diamond Core - W - Wash Sample - See Remarks	
	_			-	30-		Har		- See Remarks	BORING SB2-73

CLIENT	Case	SACH Sampler Blows Per 6" (RQD%)	IUSE	Sample	PARTN	PROJ	ECT, BOSTON MA	0001000 1 000
Depth Strata	Case	Sampler Blows Per 6" (RQD%)	Sample	Sample			OF PUBLIC WORKS	CONTRACT : 89374 SHEET NO. : 3 of 5
		4		/ Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	Carl State Selection	FICATION AND REMARKS
		355	S12	55.0 57.0	24"		Moist, stiff, gray CLAY	and silt. RINE DEPOSITS-
		-						KINE DEPOSITS-
60 —		3 4 5 5	S13	60.0 62.0	24"		DO.	
65 —		34	S14	65.0 67.0	24"		DO.	
		4 6 7		67.0				
70 —		2 4 6 5	S15	70.0 72.0	24"		DO.	
75 —		3 4 5 5	<u>516</u>	75.0	24"		DO.	
80 —		2445	S17	80.0 82.0	24"		DO.	
2						28.4 83.0	-GLACIO	MARINE DEPOSITS-
BLOWS/FT.	DENS	SITY		WS/FT.		STENCY	SAMPLE IDENTIFICATION	SUMMARY
0-4 4-10 10-30 30-50	Very Loc Medium Der	Dense	i	0-2 2-4 4-8 -15	Very So Medium Sti	Stiff	 S - Split Spoon T - Thin Wall Tube U - Undisturbed Piston C - Diamond Core W - Wash Sample See Remarks 	Overburden: 95.0' Rock: 19.5' Samples: S19 C4

ENT :	CENT						T BORING	100	BORING	002-10
Ca	BALCH	TRAL	ARTI	ERY/TI	UNNEL	PROJ	ECT, BOS	TON MA	CONTRA	
hange (D	se S F rill)P	ampler	Sample		Sample Recov- ery (in)	Elev- ation/ Depth (ft)			SSIFICATION	O. : 5 of 5 AND REMARKS
							BOREHO WOR = W RQD = R BPF = BL * = USE	LE GROU /EIGHT OF OCK QUA .OWS PER D 300# HA	F RODS LITY DESIGN/ FOOT MMER TO DR	OMPLETION ATION RIVE SAMPLER
							NO.	DEPTH (ft)	DISTANCE* (ft)	BEARING (degrees)
							SB2-73A	4.0'	5.0'	N
							- DISTAF	NCE MEAS	URED FROM S	SB2-73
		ose		2			- s - sp		SUMM Overburd Rock:	
			FT. DENSITY Very Loose					T. DENSITY BLOWS/FT. CONSISTENCY SAMPLE ID	T. DENSITY BLOWS/FT. CONSISTENCY SAMPLE IDENTIFICATION	FT. DENSITY BLOWS/FT. CONSISTENCY SAMPLE IDENTIFICATION SUMM

Sal



Hal	ley &	Aldric	h, Inc.					TEST	BORING LOG	BORING SB2-74
									ECT, BOSTON MA DF PUBLIC WORKS	CONTRACT : 89374 SHEET NO. : 2 of 4
	Strata	Case BPF (Dcill)	Sampler Blows Per 6")(RQD%)	Samp	le		Sample Recov- ery (in)			ISHEET NO. : 2 of 4 ICATION AND REMARKS
		44 36 21 29		55		25.0 27.0	24*			NIC SILT and clay, little fine sand ts. ANIC DEPOSITS-
30 —		25	PUSH	NA		30.0 31.0	5"	80.2 31.0	Attempted 3" diameter un silt from 30.0' to 31	ndisturbed tube sample in organic 1.0'. Recovered 5": Tube rejected.
35 —			6 7 8 12	<u>S6</u>		35.0 37.0	24"		Moist, stiff, yellow CLA -MAR	Y and silt. RINE DEPOSITS-
40 —			5 5 9 10	\$7		40.0 42.0	24"		DO.	
45 —			PUSH 5 5 6 7	U2 58		45.0 46.0 46.0 48.0	11"		Pushed 3" diameter undis from 45.0' to 46.0'. Moist, stiff, yellow CLA	turbed tube sample in marine clay Recovered 11". (CL/CH) Y and silt.
50 —			PUSH	U3		50.0 51.5	13"		NOTE: Pushed 3" diame marine clay from 50	ter undisturbed tube sample in 0.0' to 51.5'. Recovered 13". (CH)
	IS/FT.	-	SITY	BL	-	/FT.	CONSIS		SAMPLE IDENTIFICATION	SUMMARY
0- 4- 10- 30- 50	10 30 50	Loo Medium Dei	Loose ose 1 Dense nse Dense		0- 2- 4- 8- 15-	4 8 15	Very So Medium Sti Very	ft Stiff ff	 S - Split Spoon T - Thin Wall Tube U - Undisturbed Piston C - Diamond Core W - Wash Sample See Remarks 	Overburden: 93.3' Rock: 18.5' Samples: S12U6C4 BORING SB2-74

			ch, Inc.	-			_		T BORING LOG	BORING SB2-74
PR CL	OJEC	T: CE : MA	NTRAL	AR	TE ET	RY/T	UNNEL PARTM	PROJ	ECT, BOSTON MA DF PUBLIC WORKS	CONTRACT : 89374 SHEET NO. : 3 of 4
Depth in Feet	Strata Change	Case BPF (Drill (min/fi	Sampler Blows)Per 6" t)(RQD%)	Samo	le er/	Sample Depth Range (ft)	Sample Recov- ery (in)	Elev- ation/ Depth (ft)	FIELD CLASSI	FICATION AND REMARKS
			2234	<u>\$9</u>		55.0 57.0	24"		Moist, medium stiff, ye.	
60 —				3						RINE DEPOSITS-
00			PUSH "	NR		60.0 62.0	0"		Attempted 3" diameter u deposits from 60.0	indisturbed tube sample in marine ' to 62.0'. No recovery.
65 —			PUSH	NR		64.0 66.0	0"		Attempted 3" diameter u deposits from 60.0"	ndisturbed tube sample in marine ' to 62.0'. No recovery.
			PUSH	U4		67.0 68.5	15"		Pushed 3" diameter undi from 67.0' to 68.5'	sturbed tube sample in marine clay Recovered 15". (CH)
70 —	-		2323	S10		70.0 72.0	24"		Wet, medium stiff, gray	CLAY and silt.
75 —			PUSH "	US		74.5 76.5	19"		Pushed 3" diameter undia from 74.5' to 76.5'.	sturbed tube sample in marine clay Recovered 19". (CH/CL)
80 —				S11		80.0 82.0	24"		DO.	
			33							
BLOWS	S/FT.	DENS	SITY	BLC	ows	FT.	CONSIS	TENCY	SAMPLE IDENTIFICATION	SUMMARY
	10 50 50	Loc Medium			0-2 2-4 4-8 8-1	3	Very Sof Medium Sti	t Stiff	 S - Split Spoon T - Thin Wall Tube U - Undisturbed Piston C - Diamond Core W - Wash Sample See Pamarke 	Overburden: 93.3' Rock: 18.5' Samples: S12U6C4
50+	1 	Very	Dense	1	30-50 Dense 8-15 Stiff 50+ Very Dense 15-30 Very Stiff 30+ Hard					BORING SB2-74

Hal	ley &	Aldric	h, Inc.					TEST	F BORING LOG	BORING SB2-74
PR	OJEC	T: CEN	TRAL	AR	TER	Y/TU	INNEL	PROJ	ECT, BOSTON MA	CONTRACT : 89374
CL	IENI	Case	Sampler	1			Sample	ELEV-	OF PUBLIC WORKS	SHEET NO. : 4 of 4
Depth in Feet	Strata Change	BPF (Drill)	Blows Per 6" (RQD%)	Sampl	e De	epth ange ft)	Recov- ery (in)	ation/ Depth (ft)	FIELD CLASSIF	TICATION AND REMARKS
			PUSH	06	- Com	85.0 86.5	14"		Pushed 3" diameter undis from 85.0' to 86.5'.	sturbed tube sample in marine clay Recovered 14". (CL)
									-MAI	RINE DEPOSITS-
								22.7 88.5	-PROBABLE GI	ACIOMARINE DEPOSITS-
90 -			14 13 52 92	S12	3	90.0 92.0	10"	21.2 90.0	Moist, hard, gray SILT, s fine sand, clay, wit	some fine gravel, little coarse to the cobbles.
			92 92	1.00		1.6	1			AL TILL DEPOSITS-
		3	43%	CI		12 2	31"	17.9	the second se	F BEDROCK 93.3'
		4	4370	CI	9	3.3 8.3	51	10.5		nered, sound, green gray, coarse to TE fragments.
95 -		3						94.7 15.7 95.5	Hard, slightly weathered, medium to fine gra	, slightly fractured, light gray, ined DIABASE fragments, ASALT DIKE-
		2							Hard, slightly weathered.	, slightly fractured, gray, aphanitic ts moderately close, open, rough, p to vertical angles. Joint surfaces
		4	38%	C2	9	98.3 01.8	24"		slightly discolored.	p to vertical angles. Joint surfaces tinct, very thin bedding dipping at
100-		3							51 4051003.	
		3	0%	C3	10	01.8	13"		C3: DO. except extremel	y fractured.
		2				06.8				
105-		3							-CAMBRI	DGE FORMATION-
105		4								
		5	13%	C4	10	06.8	28"		C4: DO. except moderate dike present from 1	ely to extremely fractured. Diabas 07.0' to 107.1'. Open, rough, lled horizontal joint from 108.3' to
		3							108.4'.	
110-		3							assigned to bottom	core from C1 to C4. Lost core of runs.
		3								
	-					1		-0.6 111.8	BOTTOM OF EXPLORA BOREHOLE GROUTED WOR = WEIGHT OF RO ROD = ROCK QUALITY BPF = BLOWS PER FOO	TION 111.8' UPON COMPLETION DS / DESIGNATION T
	S/FT.	DENS	ITY	BLC	WS/F1	т.	CONSIS	TENCY	PUSH = PRESSED WITH SAMPLE IDENTIFICATION	DRILL RIG HYDRAULICS
0- 4-	4 10	Very L	.oose se		0-2 2-4		Very	Soft ft	- S - Split Spoon - T - Thin Wall Tube	Overburden: 93.3' Rock: 18.5'
10-30 Medium Dense 4-8 Medium Stiff - U - Undisturbed Piston Samples: 30-50 Dense 8-15 Stiff - C - Diamond Core Samples: 50+ Very Dense 15-30 Very Stiff - W - Wash Sample BORING SB 30+ Hard - See Remarks BORING SB							Samples: S12U6C4 BORING SB2-74			

cation U.P.A.	PROJECT, BOSTON, MA. (GEI PILE	NO. 84323)	MAY 30, 1984 Job. No Scale 1" =4
OROINE	BORING 201		
014"	ASPHALT	21 18 10 22	S/1, FROM 0'6" TO 2'6" RECOVERED 15"
	FILL	2212	S#2, FROM 5'0" TO 7'0" RECOVERED 14"
	S AN D.	5226	\$#3, FROM 10'0" TO 12'0" RECOVERED 6"
	ORAVEL, CLAY,	2522	S#4, FROM 15'0" TO 17'0" RECOVERED 10"
	WOOD	5724	S#5, PROM 2010" TO 2210" RECOVERED 14"
24 10"	ORGANIC	- 2 1 2 1	S#6, FROM 25'0" TO 27'0" RECOVERED 18"
	S I L T, WITH SHELLS	2 1 1 2	S#7, FROM 30'0" TO 32'0" RECOVERED 18"
3416"	(CONTINUED ON SHEET NO.		~_~~

SHEET _____ of ____ 2 MPA - 5.014B

	-		-	Brinck				URSI	URFACE	INVF			_	HOLE			B1-1 88418-103
CLIE	EN'	T : M	DP							INTE	5116/	A HONS		SHEE	T NO. TION N	: 1 of V:	
GROU	NDW	ATER			DEPT	но			EQUIPMENT	0	ASING	SAMPLER	CORE	ELEV	ATION	Ε:	
Date	1	Time	100	Water	Cas	sing	Но	le	Туре	ны	& NW	SPT	NB2	•	STAR		3-88
11-18-8	88	7:00		10'					Size 1.D.:	: 4	\$ 3"	1 3/8"	2"	END		: 11-3	
									Hammer Wt.	.: 1	#300	#140		DRILI		: M. I	Fisher Senapathy
		-			-	-			Hammer Fal		18"	30"		INSI'L	CIOK	, n. s	senapatny
		casi Blow ge Per Foot	s	Sampler Blows Per 6" (ROD%)	Samp	er/	Sample Depth Range	Sampl Recov			FII	ELD CL.	ASSIFIC	ATION	AND F	REMAI	RKS
				54	er	6	0.5	9"	0.5	6" As	sphalt	and base	e fill				
		30	5	36 27 21	S-1		0.5	9	0.5	Mois	t very	dense, t	prown-b	lack, SA	ND, lit	tle gra	vel.
- 5		7.	3	98 36 18	S-2		4.0 6.0	14"	5.0	A Street	very d silt.	ense, gra		n, SANI FILL>) and C	GRAVI	EL, trace
1	1	!		17						Gray brown, wet dense, SAND, little silt and shell							
i i	11		1		17					Gray	frage	n, wet d nents.	ense, SA	ND, III	tle silt a	and she	11
1	r	1						1) — — ·							
2	11	1			11		11.1			·							
i	i	1		WOH/ 12"	S-3	V	9.0 11.0	6"		Wet,	very s	soft gray	, ORGA	NIC SI	T, littl	e fine	sand and
-10-1	1	1	-	1		V	11.0			S	clay.	d HW ca	sing at 9	e.			
ł	1	1-		2	-	11	-	-									
1	i	1															
1	1	1	_						1				<org< td=""><td>ANICS</td><td>II T.</td><td></td><td></td></org<>	ANICS	II T.		
ľ			_	worr					13.5					22222	2222		
-15-	li	1		WOH/ 12"	S-4	V	14.0 16.0	20'		wet,	grave 0.2 ts	soft gray el.	, CLAY	and SII	T, trac	e of fi	ne sand a
15	1	1		1		V				PP <	0.2 ts	f.					
	Ľ	1				T		1		1.00							
Î	i	1	-														
1	1	1	-				- III										
l li		-	_		S-5	1	19.0	20'	-	Wet	soft o	ray, SIL	T and F	INE SA	ND lin	le fibe	10115
-20-1	i	1	_	222	0-5	V	21.0	20		mer,	orgai	nics. Org	anic odo	r.	чD, ш	ie noe	lous
1		1		2	1.4	VI											
1		1															
i	fil	1					1000										
1	1	1	-														
	1			1/ 12"	S-6		24.0 26.0	24		Wet,	very : peat	soft gray and shel	, SILT, I fragme	little fin nts. Org	e sand	and cla lor.	iy, trace o
BLOW	S/F1	٢.		DENSITY	r		BLOWS	FT.	CONSIS	TENCY	SA	MPLE IDEN	TIFICATIO	N	SUN	MARY	
	0-4 Very Loose 0-								Very				lit Spoon			rden: _1	
4-			Не	Loose dium De			2-4 4-8		So Medium		諁	- T - Th - U - Un	in Wall T disturbed	Piston	Rock: Sample		45
30-5			N.	Dense ery Den			8-15		Sti Very			- C - Di	amond Cor sh Sample	e		100	
50	0			cry ben			30+	2	Ha			3 C H C HO	an adipte		HOL	E NO.	SB1-

(E)

Prahte	el/P	arsons	Brinck	cerhof	ſ		TEST	BORI	NG LOG.	HOLEN	NO.	SB1-1
PROJ				GEOT	ECH. S	UBSU	RFACE	INVES	TIGATIONS	CONTR SHEET		: SC-88418-103 : 2 of 4
cale Str	ata	Casing Blows	Sampler Blows Per 6" (RQD%)	Sample		Sample Recov- ery	Layer Elev- ation/ Depth		FIELD CLASSIFI			
- E E												
Ĩ.				S-7	29.0 31.0	20"	-	Wet, s	oft gray, SILT, littl and shell fragments	e fine sand . Organic o <silt></silt>	and dor.	clay, trace of peat
3			4	S-8	34.0 36.0	24"	33.0 34.0		ous PEAT from 33'	10.00		
- ננ			17 21					Moist PP > 4	very stiff, gray SIL 1.5tsf.	TY CLAY.		
40 —			6 6 7 11	S-9	39.0 41.0	24"	_	PP = 2	2.0 tsf.			
45 -			4579	S-10	44.0	24"	-	PP = (0.75 tsf.			
50 -			3466	S-11	49.0 51.0		-	PP =	1.0 tsf.			
			12		54.0	-		PP = 0	nedium stiff, gray, 0.5 tst.			
BLOWS/ 0-4 4-10 10-30 30-50 50+	0	,	Very Loc Loose ledium De Dense Very Der	ense	BLOWS, 0-2 2-4 4-8 8-1! 15-3! 30+	5	CONSIS Very So Medium Sti Very Ha	Soft ft Stiff ff Stiff	SAMPLE IDENTIFICAT - S - Split Spc - T - Thin Wall - U - Undisturb - C - Diamond C - W - Wash Samp	oon Tube Sed Piston Core	Overbu Rock: Sample	

	A second second second second				-	UBSU			GATIONS			SB1-1 : SC-88418-10
		T : MD	PW	-	Len. o							: 3 of 4
	Scale Stra in Char Feet	Casing Blows nge Per Foot	Sampler Blows Per 6" (RQD%)	Sample	Sample / Depth Range	Sample Recov- ery	Layer Elev- ation/ Depth	1	FIELD CLASSII	FICATION /	AND R	EMARKS
	- 60 -			S-13	59.0 60.5	18*	-	Wet, me PP = 0.8	dium stiff, gray tsf.	, SILTY CL	AY.	
	-65-		WOH 3 4	S-14	64.0 65.5	18"	-	PP = 0.	6 tsf.			
J	- 70 -		WOH 5 6	S-15	69.0 70.5	18"	_	PP = 0.6	tsf.			
	-75-		WOR WOH 5	S-16	74.0 75.5	18"	_	PP = 0.1	s tsf.			
	- 80 -		WOH 3 5	S-17	79.0 80.5	18"	_	PP = 0.1	25 tsf.			
	BLOWS		WOH7 3	1	84.0 85.5	1000	CONS	PP = 0.	5 tsf.	ATION	SU	NHARY.
)	0-4 4-10 10-30 30-50 50+)	Very Lo Loos Medium D Dens Very De	e e ense e	0-2 2-4 4-1 8- 15-:	3	Ver S Mediu S	y Soft Soft Im Stiff tiff y Stiff	- S - Split S - T - Thin Va - U - Undistu - C - Diamono - W - Wash Sa	Spoon all Tube urbed Piston d Core	Overbu Rock: Sample	urden: <u>1141 3"</u> 01

(<u>)</u>

	-		ons Brin	-			-			NG LOG	HOLE		SB1-1
			PRELIM.	GEO	OTE	CH. S	UBSU	RFACE	INVES	TIGATIONS			: SC-88418-103 ; 4 of 4
	Str		ing Sampl ws Blow Per 6	s Sam	ber/	Sample Depth Range	Sample Recov- ery	Layer Elev- ation/ Depth		FIELD CLASSIF			
- 90 –			333	S-1	19	89.0 90.5	18*	-	Wet, r PP = (nedium stiff, gray, D.6 tsf	, SILTY CL.	AY.	
95 –			WO 6 4	TS-2	20	94.0 95.5	18"	-	PP = (0.6 tsf			
100-			WO WO 5	R S-3	21	99.0 100.5	18"	-	PP = (0.4 tsf.	<clay></clay>		
105-					22	104.0	5"	104.0	Wet, o	dense, gray, SAND fragments), little s		r GRA	VEL, (argillite
110-			35 34 57	S-:	230	109.0	7*	-	Wet, silt.	very dense, gray S.	AND and an	gular	GRAVEL, little
			1007	3"S-	2400	114.0 114.3	3"	114.2	Backf	Bottor illed hole with per	<till> n of hole at astone.</till>	114' 3	
BLC	ows/	FT.	DENS	TY		BLOWS	FT.	CONSIS	TENCY	SAMPLE IDENTIFIC		su	MHARY
4 10 30	0-4 4-10 0-30 0-50 50+		Very L Loo Hedium Den Very D	se Dense se		0-2 2-4 4-8 8-15 15-30 30+	5	Very So Medium Sti Very Ha	ft Stiff ff Stiff	• S • Split S • T • Thin Wa • U • Undistu • C • Diamond • W • Wash Sau	ll Tube rbed Piston Core	Rock: Sample	

þ

BORING 383	4	BORING 384		BORING 385		BORING 386		BORING	
DEO FILL			116.5	GRADED FILE SAND GRAVEL	116.0	1 in the owner of the	1145	TOP OF FILL	
D GRAVEL TONES FILL TER	3		109.5	WATER	1075	CLAY SAND GRAVEL C CINDER FILL WATER			
	т. 	an an airte an an airte an an airte an an airte an airte Tha airte an	101.5		調整に			CANDER C	
•			940	BRICK FILL	1930 1930		93.0 93.0		
SE SAND & AVEL FILL	90.5 84.8	SOFT SILT	85.0	1	86.0	SILT OF THE SALD SIL	855	SULTILITYLE PINE SAND MEDIPULE CLAY	
		HARD BLUE	765	HARD VELLOWCLAY II & FINE SAND	59.5 19.5	CAVEFNE SAWO 10	101 11 1770	HARDYELLOW 17 CLAY 25 FOR 19 15	
FT SILT	74.5	· · · · ·		SOFT VELLOWDAY 5	170.0	SOFT YELLOW 5	715		
-	5 x	MEDILIMI BLUE	6 6 5	「大潮」に			45 61.4	MEDION PLUE 6 CLAY	記録の
TALVE	, 1 - 9 -		福	SOFT BUIK				MECULINI BUDE 6 DUDY BUDE 6 DUDY BUDE 7	開設に
1 ALUE 3	50.5	「「「「「「「」」」				SOFTBUL CAY			Trans.
4	de.	N ₁ , en	45.0	and hardent ac			1018 1124		
0 204855 30		in the second	1-45 - 168#2 A		5.41.2		市場に	SOFT BLUE	
USAL 30	-	- 10 - 10 -	. 1		27.7	HIED COLASSE GRAVELE BOULDERS & CLAY			
		a a transformation a tr	÷T ∔n¥ V¥⊅				22.5 183	ALTTLE CLAY 42 REFUSAL	

Sec. 2

2 . **1**

_)

BORING 388	BORIN 389	G	DRING 390	BORING 391	BORING 392
IIGO GRADED FILL SAND GRAVEL G CLAY FILL 1090 WATER	6.9 <u>GRADED FILL</u> III.0 SANO GRAVEL d CLAY FILL 1090 WATER			CINDER &	IIAS TOP OF FILL
101.0 SILTY SAND	20.0 CLAY FILL ¢ SILT	93.0	CK FILL 101.0	SILT VERY UTTLE FINE SWD	SILT & SAND
96.0 95.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87.0 MED VELLOW O	12 83.5 82.0 MED.E HURDY 9 75.5	SAND LUE CLAY 10 14 ELLOWCLAY 17 24 8	· · · · · ·	80.0 78.5 <u>SOFT BLUECLAY 4</u> HARD YELLOW CLAY 19 74.0
9 10 10 10 10 10 10 10 10 10 10 10 10 10	66.0 50.0	70.5 WED.B	210W CLAY 1/4 71.0 7 1/2 71.0 7 7 1/2 71.0 7 7 9 9	7	иео вше силу в
HELD VELLOW, CAD		МЕО. 5 50. 5 И МЕО В	WE CLAY 6	S	59.5 SOFTBLUE CLAY ZA
200		39.5	BWE CLAY	5 6 7 MED.BLINE CLAY	37.5 HARD CEMENTED 20 SAND GRAVEL : 34 33.5 CLAY 54
BOULDER		21.0 HARD GRAV 17.0 LITTI REFU	3AND # 40 EL CLAY 43 ISALL 1:0 13.6	5 HARD COARSE 16 SAND & GRAVEL LITTLE CLAY 34	
				e the Cal	

BORING AND WELL CONSTRUCTION LOG

						D		O AI	VD WELL CONSTRUCTION	100			
		ł	000 144	ranat+ '	C+		Site:	Bos	ton Frieght Terminals	Boring/V	Vell N	lo:	B-203
	60		888 Wo Suite 24		sueet		Clien	t Nam	e: Cargo Ventures	Depth to Wate	er (ft):	N/A	·
	Group, Inc		Wellesle	ŧγ			Date	(s): <u>1</u> /	10/05	Well Diamete	r (inche:	s):	N/A
			Massach 02482	nusetts						Well Screen S	Slot Size	e:	N/A
	Engineens						Drillin	ng Met	nod: HSA	Measuring Po	oint:		N/A
	Scientists		p 781.43 f 781.43				Samp	oling M	ethod: 2' Split Spoon	Measuring Po	int Elev	ation:	N/A
	Consultants		1 /01.45	1./434			ESS	Obser	ver: V. Boyd	Ground Surfa	ce Eleva	ation:	N/A
Depth bgs (ft.)	Sample or Run Designation	Sample Type	Blows per 6 inches or Core Run (time/ft.)	Recovery/Penetration (ft)	Rock Quality Designation		eening)ata (IIIdd) (J] J	Elevation (ft.)	<u>Materials Description</u> Soils: moisture, density ¹ , color, size and minor constituents ² Rock: color, rock type, hardness, ma types, weathering, and degree of	ajor mineral	Graphical Log		Well Construction
- 0	B-203 0-2	D		10/24		15		- 0	tan/black, medium to fine SAND and coal ash	gravel, 6"	HERERER HERERER HERERER		
- 5	8-203 5-7	D		24/24		5			dark brown/black, medium to fine SAN medium gravel, trace broken brick	ND and	каналан нанинн нанинн	5 6 7 -8 9	
10 - - -	B-203 10-12	D		12/24		ND		10 - -	gray, SILT, trace broken brick, black o banding, trace shells Bottom of Boring @ 12	rganic		- 10 - 11 - 12 - 13	
- 15 - -								15				- 14 - 15 - 16 - 17 - 17 - 18	
- 20 LEGE	ND:		SAMPLE	TYPES:	5	SOIL	-	20		OTES:		19	
ND: N/A; bgs: NM: r ROCK Q reporte	not detected not applicable below ground surfa not measured WALITY DESIGNA dd in % = [length ol	TION	D: drivi W: was TP: test ST: She A: auge HA: han C: core RC: rotas N (RQD): a in pieces	e theol tpit stby Tube st nd auger		Density de 12° of pen 2° O D. sp laken theo	ietration usi bill spoon si n dansily m	ing a 140 I ampler III lay be estil PROPOF Trace Litlle: Some	0-2: very soft 0-3: very soft 0-4: soft 0-4: soft 0-50: very soft 0-4: soft 0-50: very soft 0-50: very soft 0-20: soft				
and	longer/length of ru	nj x 1				•			50+: very dense				

BORING AND WELL CONSTRUCTION LOG

	<u></u>					D_{L}		<u>G</u> AI	ND WELL CONSTRUCTION L	00	·	
	FRR		000 44-	opeka- 1	*** ~ -*		Site:	Bos	ton Frieght Terminals	Boring/W	ell No:	B-204
	\mathbf{h}		888 Wor Suite 240		sreet		Clien	t Name	: Cargo Ventures De	epth to Water	(ft): N/A	
1	Group, Inc.		Wellesley	Y			Date((s): <u>1</u>	//30/04 W	/ell Diameter (i	inches):	N/A
ĺ			Massach	usetts						ell Screen Sid	t Size:	N/A
1	Engineers		02482	÷				ng Meti		easuring Poin	t: —	N/A
I I	Scientists	-	p 781.43				Samp	oling M	ethod: 2' Split Spoon Me	easuring Poin	t Elevatior	i: N/A
	Consultants	1	f 781.43:	1.7434			-	Obsen		round Surface		
				Ê		0	ening	T		T		
Depth bgs (ft.)	Sample or Run Designation	Sample Type	Blows per 6 inches or Core Run (time/ft.)	Recovery/Penetration (ft)	Rock Quality Designation		(udd) OIL	Elevation (ft.)	<u>Materials Description</u> Soils: moisture, density ¹ , color, size, n and minor constituents ² Rock: color, rock type, hardness, major types, weathering, and degree of frac	or mineral	Graphical Log	Well Construction
0	B-204 0-2	D		12/24		ND		-	grey/black, medium to fine SAND, some sand, some broken brick and concrete	e silty	-1 -1 -2 -3	
- 5	B-204 5-7	D		14/24		ND			grey/black, medium to fine SAND, some sand, some broken brick and concrete	silty	4 5 6 7 -7 -8	
- 10 -	B-204 10-12	D				ND		10	grey, SILTY SAND, trace medium to fine			2
- 15							-	15				4 5 6
- 20 	ND:		SAMPLE	TYPES:		;OIL		20		TES:		
ND: N/A: bgs: NM: ROCK C report	not detected not applicable below ground surfa not measured	TION	D: drive W: was TP: lest ST: She A: auge HA: han C: core RC: rotas V (RQD): in pieces	a hed pit HoyTube mr nolauger	1	Density de 12" of pen 2" O D s; laken the	elration us bill spoon s n density n	ing a 1401 sampler. If hay be esti PROPOI Trace Little Somi	0-2: very soft ow counts for each 3-4: soft own x 30° drop on a 5-8: medium stiff kow counts are not 9-15: sliff			

BORING AND WELL CONSTRUCTION LOG

							Site:	Bos	ton Frieght Terminals	Boring/M	/ell N	lo:	B-205
	144		888 Wor Suite 240		treet			Name		Depth to Water			
💻	Group, Inc.		Suite 24) Wellesley						/14/04	Well Diameter	_		N/A
-			Massach						pany: Carr-Dee	Well Screen Si		· —	N/A
ı	Sugar	1	02482					g Meth		Measuring Poin			N/A
1	Engineers Sciencists		p 781.43	1.0500				ling M	01.0-10.0	Measuring Poil		ation	: N/A
	Consultanta		f 781.43				-	Observ		Ground Surfac			
'					_						1		
Depth bgs (ft.)	Sample or Run Designation	Sample Type	Blows per 6 inches or Core Run (time/ft.)	Recovery/Penetration (ft)	Rock Quality Designation		eening ata (wdd) (11	Elevation (ft.)	<u>Materials Description</u> Soils: moisture, density, color, siz and minor constituents ² Rock: color, rock type, hardness, m types, weathering, and degree of	ajor mineral	Graphicat Log		Well Construction
0 	B-205 0-2	D		8/24				0	black/orange, fine SAND, trace coal a	ash			
5	B-205 5-7	D		6/24					grey/green, fine SAND, trace silt				
- 10 	B-205 10-12	D						10	gret, SILTY CLAY, wet Bottom of Boring @ 12				1
- 15 -								- 15 -					4 5 6
- 20								20				- 18 - 19 - 20)
ND: N/A: bgs: NM: ROCH ROCK	END: not detected not applicable below ground sur not measured C QUALITY DESIGN rted in % = [length of longer/length of	ATIC	A: aug HA: ha C; com RC: rola N (RQD): re in pieces	re shed sheit elby Tube er and auger ad ssonic core	1	12 of pe 2 O.D : Laken ihi	neration u spill spoon : en density r fURE: ²	sing a 140 sampler If nay be est PROPO Traci Little Som	bow counts for each bow counts for each bow t x 30° drop on a 5-8: medium stiff blow counts are not 9-15: stiff	NOTES:			

·

APPENDIX D

2019 Test Boring Logs and Observation Well Installation Report

	D R	RICH	1			Т	EST	BORING REPOR	R				Во	rin	g I	No.	I	HA	19-	B1	
Project Client Contra		CAR	RGO V	VENTU	RES		ON, 329 RATION	NORTHERN AVE., BOST	'ON, M	IA		Sł	le N neet art		o. 1 J	of une	5 24	, 20			
				Casing	1	npler	Barrel	Drilling Equipment	and P	rocedures			nish				28 				
Tuno						·		Rig Make & Model: B57					iller &A I				Fle			stw	
Гуре nside [Jiamo	tor (ii		W/NW		S	NX	Bit Type: Roller Bit	Wobile				eva				6.2		<u> </u>		•
Hamme		`	í l	4/3 300		3/8 40	3	Drill Mud: None Casing: HW Drive to 69	.0 ft. NV	V Spun to 114.	0 ft		atun			Bo		n C		Bas	(
Hamme		0 (<i>'</i>	24		60	-	Hoist/Hammer: Cat-Head PID Make & Model: Ion	d Doug	ghnut Hammer	-	LC	ocat		3	ee	Plai	n			
l (ft) Blows	- No	in.)	e (j	ings	lodn	(ff)	² \	ISUAL-MANUAL IDENTIFICA		ND DESCRIPTIO	N	-	avel	-	San	d				Tes	1
Depth (ft) Sampler Blov	per 6 in Sample I	& Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	optional	descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
0 +				ш. —				-BITUMINOUS C	ONCRE	TE-		-					-	-	-	-	-
					SM	15.6 0.6		silty SAND with gravel (SM), n noist, trace concrete and brick		n., no structure,	no	10	10	10	30	20	20				
							Note:	Location precleared with vac t	ruck to (6.0 ft.											
5 -								-FILL-													
17 12 10	2 1	51 2	6.0 8.0		SM		Gray s	ilty SAND (SM), mps 0.3 in., n	o structi	ure, no odor, we	t				20	65	15				
1(8 1 ⁻ 12	3 S 1 4	52 4	8.0 10.0		SM			ilty SAND (SM), mps 0.2 in., n pockets of organic silt, trace s		ure, no odor, we	t, 10%										
10 6 3 2 1	3 S 2 1	-	10.0 12.0	ND	SP- SM			gray poorly graded SAND with re, no odor, wet, trace shell sp		P-SM), mps < 1.∖) in., no					90	10				
2 2 1	2 S		12.0 14.0	ND	SP- SM		Similar	to above								90	10				
2 2 2 15 - 3	2 2 S 2 1	-	14.0 16.0	ND	SM		Loose wet	gray silty SAND (SM), mps <	1.0 in., r	no structure, no	odor,					85	15				
1 1 3 1'	S 1 1	- 1	16.0 18.0	ND	SM		Mediur no odo	n dense gray silty SAND (SM) r, wet	, mps <	1.0 in., no struc	ture,					85	15				
7 1 1 4 5	S 2		18.0 20.0	ND	CL			n stiff gray lean CLAY (CL), m /et, 10% - 15% pockets of org) in., no structur	e, no					5	95				
20																					
		Wat	er Le	vel Dat	a	I		Sample ID	W	ell Diagram		<u> </u>	5	⊥ <u>Su</u> n	∣ nma	Iry					
Date	Т	ime	Elap	sed		th (ft) to Bottom		O - Open End Rod		Riser Pipe Screen	Overl	our				-	08.	0	_	_	
			Time	(111.) of C	Casing	of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	9. 9 [.] 9.	Filter Sand	Rock			•	<i>.</i>		5.0				
6/27/19	9 0	715	16	.0 3	34.0	71.0	11.43	S - Splitspoon Sample G - Geoprobe	4. 4 4. 4	Cuttings Grout Concrete Bontonito Soal	Samp Bori				25S) 1A1	19-1	B1		
Field Te	sts:						S - Slow			Bentonite Seal	ow M-N						\/-		h		-
Note:	Maxim	num pa	article	size is o	determ	nined by	direct ob	m H - High Dry Str servation within the limitation sual-manual methods of th	s of san	N - None L - Lov npler size.							very	/ Hig	n		

H&A-TEST BORING WITH PERM PID COLUMN HALLB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT 6:132733 - 2 HARBOR STREETGINT13273-006 TB_2_OW.GPJ Aug 2, 19

Н	<u>A</u> LE	RIC	н			T	EST BORING REPORT	F	ile	No.). 327: 2	53-0		9-B	1
÷	SWC	و رُ	a 🛈	sbu	lod	(ff)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	avel	1	San			Fi	_	Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
-							-FILL-									
- 25 -	2 3 4 5	S8 20	24.0 26.0	ND	OL/ OH	-7.8 24.0	Medium stiff gray sandy ORGANIC SOIL (OL/OH), mps < 0.1 in., no structure, faint organic odor, wet, trace peat fibers					30	70			
-							-ORGANIC DEPOSITS-									
- 30 -	3 3 4 4	S9 2	29.0 31.0	ND	OL/ OH		Medium stiff gray ORGANIC SOIL (OL/OH), mps 0.1 in., no structure, faint organic odor, wet, trace shells						100			
- - - 35 - -	5 6 10 13	S10 7	34.0 36.0	ND ND	PT CL	-18.8 35.0	Stiff dark brown to brown PEAT (PT), mps < 0.1 in., no structure, faint organic odor, wet Very stiff gray lean CLAY (CL), mps < 0.1 in., no structure, faint organic odor, wet, trace peat fibers						100 100			
- - - 40 - -	8 10 14 17	S11 22	39.0 41.0	ND	CL		Very stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 2.75 - 3.25 tsf						100	S	н	М
- - - 45 - -	4 4 6 7	S12 24	44.0 46.0	ND	CL		-MARINE DEPOSITS- Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 1.5 tsf						100	S	М	м
- - - 50 - -	WOR 2 3 5	S13 20	49.0 51.0	ND	CL		Medium stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.75 tsf						100	S	м	M
-							nual methods of the USCS as practiced by Haley & Aldrich, Inc.				No			-IA1	9.F	

Н	ÂLE	Y RIC	H			T	EST BORING REPORT	F	ile	No.	Nc 1 lo.	327			9-B	1
~	s	o' 🔶		sb	0	(ff)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel	-	San				ield	Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
- 55 -	WOR 2 4 5	S14 24	54.0 56.0	ND	CL		Medium stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf						100	S	м	н
60 -	3 3 6 7	S15 24	59.0 61.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf						100	S	м	н
							-MARINE DEPOSITS-									
65 -	WOR 4 6	S16 24	64.0 66.0	ND	CL		Medium stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	S	м	н
70 -	2 3 6 5	S17 24	69.0 71.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 tsf						100	S	м	н
75 -	WOR 4 5 9	S18 24	74.0 76.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 tsf						100	S	м	н
80 -	WOR 2 5 7	S19 24	79.0 81.0	ND	CL		Medium stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 tsf						100	S	м	н
							nual methods of the USCS as practiced by Haley & Aldrich, Inc.				No			HA1	9.F	<u></u>

Н	<u>À-</u> E	RIC				Т	EST BORING REPORT			-	Nc		 '53-0	HA1 006	9-E	\$1	
			Π					S	She	et N	lo.	4	of	5	<u> </u>	_	_
(ŧ	Blow:	(in.)	(ff)	dings (I	oqui	th (ft	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel	-	San E	-			ŝ	Test	
Depth (Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	1
- 85 -	WOR 2 3 6	\$20 24	84.0 86.0	ND	CL		Medium stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 tsf						100	S	Μ	н	
- 90 –	WOR 4 5 7	S21 24	89.0 91.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	s	М	н	
							-MARINE DEPOSITS-										
95 -	WOR 5 7 9	S22 21	94.0 96.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.5 - 0.75 tsf						100	S	Μ	н	
100-	WOR/ 5" - 1 6 9 <u>9</u>	S23 24	99.0 101.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	S	м	н	
-105-	WOR 13	S24 11	104.0 105.2	ND	CL	-88.7 104.9	Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf		45	10	45	10	100		м		
	100/ 2"			ND	CL	-91.8 108.0	Hard gray sandy lean CLAY (CL), mps 0.5 in., no structure, no odor, wet Note: Drill action indicates boulder from 105.2 ft - 106.5 ft. -GLACIOMARINE DEPOSITS- Note: Drill action indicates potential top of weathered bedrock. TOP OF BEDROCK 108.0 FT		15	10	15	10	50	S	М	M	
	80 100/ر	S25 ∖_4_∕	109.0 \109.7			108.0	-BEDROCK- Very dense gray weathered ARGILLITE, mps 1.0 in., rock fabric structure, no odor, wet										
110-	2"						-BEDROCK-										
							Note: Advance roller bit to 114.0 ft. Drill action indicates more competent bedrock at 114.0 ft.										
							SEE CORE BORING REPORT FOR ROCK DETAILS										
	NOTE	Soi! :-	ontifier	tion ha-	od an .		nual methods of the USCS as practiced by Haley & Aldrich, Inc.	P	ori	na	No		I	HA1	19-E	31	

	HAL	EY DRIC	н			CO	RE B	ORIN	G REPORT	Boring No. HA19-B1 File No. 132753-006 Sheet No. 5 of 5
ſ	Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Desc and Rema	ription arks
									SEE TEST BORING REPORT FO	R OVERBURDEN DETAILS
	- - 115	3.5 2	C1	114.0 119.0	54 45	90 75			Moderately hard to hard, fresh, gray, aphanitic A thin, joints moderately dipping, close to wide, pla	RGILLITE. Bedding extremely thin to anar, smooth to rough, fresh, tight.
		2 2							-BEDROC	СК-
		2						-102.8 119.0	BOTTOM OF EXPLOR	ATION 110.0 ET
	- 120 - -							113.0		
	125									
I Aug 2, 19										
IT\132753-006 TB_C_OW.GP.	– 130 –									
G:\132753 - 2 HARBOR STREET\GIN	- - 135 — -									
-TB+CORE+WELL-09 W FENCE.GDT	- - 140 -									
H+A_CORE+WELL 09 HA-LIB09-BOS GLB HA-TB+CORE+WELL-09 W FENCE (DT C1/12753 - 21 HARBOR STREETIGINT/12753-006 TB_C_OW GPJ Aug 2, 19	- - 145									

Н		PRIC	н			т	EST	BORING REPOR	RT		E	30	rin	g١	lo.	H	ΗΑ' ((19- DW	B2)
Proj Clie	ect	SO CA	UTH I RGO	VENTU	JRES		ON, 329 RATION) NORTHERN AVE., BOS	Ton, Ma			eet). 1 J	275 of une	5 24,	, 20		
-				Casing		npler	Barrel	Drilling Equipmen	t and Procedures		Fin Dri				July		201	9	
Туре				W/NW		S	NX	Rig Make & Model: B57					Rep		Fisc A	ner Flei	min	na	
		meter (4/3		3/8	3	Bit Type: Roller Bit					tion		16	.8 ((est	.)	
Ham	imer V	Veight ⁻ all (in.	(lb)	4/3 300 24	1	40	-	Drill Mud: None Casing: HW Drive to 34 Hoist/Hammer: Autom PID Make & Model: Ion	atic Hammer	ť	Da Lo			S	Bo ee F	osto Plar		ity I	Bas
_	SN	oʻ 🔶		gs		 €		/ISUAL-MANUAL IDENTIFICA			Gra	vel		Sano				ield	Те
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	max. particle size [†] , optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -	0)			-		16.3		-BITUMINOUS C			-	-			-	-	_		_
					SP SM	0.5		light brown poorly graded SA ire,, no odor, moist	ND (SP), mps 0.5 in., no		10	<u>5</u> 10	10	65, 30	25, 20	20			
						0.8	Black	-FILL silty SAND with gravel (SM), r noist, 5% - 10% concrete, trac	nps 3.0 in., no structure, r	/					20				
								Location precleared with vac											
_								-FILL	-										
5 -																			
-	25 18 25	S1 10	6.0 8.0	ND	SP			gray to light brown poorly gra icture, no odor, moist	ded SAND (SP), mps 0.3	in.,				15	80	5			
-	28 19 13 12	S2 9	8.0 10.0	ND	SP			m dense gray poorly graded S ire, no odor, wet, trace pocket						15	80	5			
10 -	14 7 4 5	S3 13	10.0 12.0	ND	SM		Loose trace s	gray silty SAND (SM), mps 0. hells	2 in., no structure, no odo	r, wet,				25	60	15			
-	16 14 4 8	S4 15	12.0 14.0	ND	SM		Mediui odor, v	m dense gray silty SAND (SM vet), mps 0.1 in., no structure	e, no				20	60	20			
15 -	13 4 3 6	S5 12	14.0 16.0	ND	SM			gray silty SAND (SM), mps 0. bockets of organics, trace she		r, wet,				20	60	20			
-	4 2 3 5	S6 16	16.0 18.0	ND	CL			m stiff gray lean CLAY with sa ire, no odor, wet, trace shells	nd (CL), mps 0.3 in., no					5	15	80	s	м	М
-	7 7 8 10 12	S7 16	18.0 20.0	ND	SP			m dense gray poorly graded S ire, no odor, wet, trace shells,					5	60	30	5			
20 -				1															
		W=	ater I é	evel Da	ta		1	Sample ID	Well Diagram				l Sum	l Ima	rv				
D	ate	Time	Elap	osed _	Dep	th (ft) to	D:	O - Open End Rod	Riser Pipe	Overt	ourc				-	04.0	C		
		11116	Time		ottom Casing	Bottom of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock	Co	red	•	<i>'</i>		5.0			
	2/19 2/19	0710 0715	16	8.0	34.0 OW	109 20.0	7.79 9.78	S - Splitspoon Sample G - Geoprobe	Cuttings Grout	Samp					, 1C		20		•••
	5/19	0713			ow	20.0	9.81		ے کے Concrete Bentonite Seal	Bori	-				IA1	9-E	52	0	VV)
Field	Tests	:		Dilatar	ncy:R	- Rapid	S - Slow M - Mediu		ity: N - Nonplastic L - Lor rength: N - None L - Low							verv	Hia	 h	

Ц		RIC	H			T	EST BORING REPORT	F	ile		. 1	1327	HA 753-0 of	006	32 ((OW)
(ft)	Blows in.) No.	ole (ft)	dings (r	/mbol	um ge oth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	ave	I	San	d		F		Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
-							-FILL-									
- 25 -	2 3 2 4	S8 24	24.0 26.0	ND	OL/ OH	-7.2 24.0	Medium stiff gray ORGANIC SOIL (OL/OH), mps 0.1 in., no structure, organic odor, wet, trace shells					5	95			
-							-ORGANIC DEPOSITS-									
- 30 -	1 3 4 7	S9 7	29.0 31.0	ND	OL/ OH		Medium stiff gray ORGANIC SOIL (OL/OH), mps 0.1 in., no structure, organic odor, wet, trace shells						100			
-																
- 35 -	8 11 18 18	S10 21	34.0 36.0	ND	CL	-17.2 34.0	Very stiff tan lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 2.5 - 3.5 tsf						100	S	Η	M
- - 40 -	5 7 9 9	S11 23	39.0 41.0	ND	CL		Very stiff tan lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 1.0 - 1.75 tsf						100	S	Н	м
_							-MARINE DEPOSITS-									
- 45 - 	5 5 6 9	S12 24	44.0 46.0	ND	CL		Stiff olive brown to gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.5 - 1.0 tsf						100	S	М	М
- - - 50 -	3 4 6 6	S13 23	49.0 51.0	ND	CL		Stiff olive brown to gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	S	М	н
_		Soil in	lentificat	tion has	ed on v	/isual-ma	nual methods of the USCS as practiced by Haley & Aldrich, Inc.	L B	ori	ng	No	<u> </u>	HA	19-1	B2 ((ow)

Н		PRIC	H			Т	EST BORING REPORT	F	ile	No.	1 1 10.	327	HA ′ 53-0 of	006	32 (ON
	sw	oʻ 🔶		gs		(#)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel	-	San				ield	Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
- 55 -	3 4 5 7	S14 24	54.0 56.0	ND	CL		Stiff gray to olive brown lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.5 tsf						100	S	м	н
60 -	3 4 6 7	S15 24	59.0 61.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	S	м	н
							-MARINE DEPOSITS-									
65 -	3 6 9	S16 24	64.0 66.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf									
70 -	2 4 6 7	S17 24	69.0 71.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf						100	S	м	н
75 -	2 3 4 7	S18 24	74.0 76.0	ND	CL		Medium stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 tsf						100	S	м	н
80 -	3 6 6 6	S19 24	79.0 81.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.25 - 0.75 tsf						100	S	м	н
											No		HA	10 '		

Н	æ	RIC	H			Т	EST BORING REPORT	F	ile	No		1327	HA 753-0	006	32 (OW
				s	ō	(j		-	avel	-	lo. Sar		of		ield	Tes
Depth (ft)	er Blov 6 in.	ole No c. (in	Sample Depth (ft)	eadinę pm)	Symb	atum ange epth (VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] ,	Coarse	۵ ۵	Coarse	dium	۵ ۵	se	ncy	ness	sity
Dep	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sal Dep	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Co	% Fine	% Co	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
85 –	3 5 8 10	S20 24	84.0 86.0		CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.5 - 0.75 tsf						100	S	Ν	Н
90 -	WOH 3 7 7	S21 24	89.0 91.0		CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf						100	S	м	Н
							-MARINE DEPOSITS-									
95 -	4 6 9	S22 24	94.0 96.0		CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf						100	S	М	н
100-	WOR 4" WOH 2" 19 22 19	S23 18	99.0 101.0		CL CL	-82.7 99.5 -85.2 102.0	Very soft gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet Hard gray lean CLAY with gravel (CL), mps 0.2 in., no structure, no odor, wet -MARINE DEPOSITS- Note: Drill action indicates change in material and density at 102.0 ft.		15			5	100 80		M	H H
105-	29 14 32 39	S24 11	104.0 106.0		SC		Dense gray clayey SAND with gravel (SC), mps 1.0 in., no structure, no odor, wet -GLACIAL TILL-	10	10	10	15	30	25			
110-	38 63 81 100/ 3"∫	S25 13	109.0 110.7		SM	-93.7 110.5	Note: Very high water loss from 104.0 ft - 109.0 ft. Very dense gray silty SAND with gravel (SM), mps 0.7 in., no structure, no odor, wet, weathered argillite in spoon tip -GLACIAL TILL- TOP OF BEDROCK 110.5 FT Note: Drill action indicates top of potential bedrock at 110.5 ft. -BEDROCK- Note: Advanced roller bit to 114.0 ft. Drill action indicates	10	15	5	15	40	15			
							competent rock at 114.0 ft. SEE CORE BORING REPORT FOR ROCK DETAILS									1
1							· · · · · · · · · · · · · · · · · · ·	В	1			1				OV

HAL	EY DRIC	н			со	RE B	ORIN	IG REPORT	Boring No. HA19-B2 (OW) File No. 132753-006 Sheet No. 5 of 5
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove	ery/RQD	Weath- ering	Elev./ Depth (ft)	Visual Des and Rem	cription narks
- 115 -	4 3 3	C1	114.0 117.0	36 22	100 61			SEE TEST BORING REPORT FC Hard to moderately hard, fresh, gray, aphanitic thin, joints moderately to high angle dipping, m smooth, fresh, tight to open. Note: C1 stopped at 117.0 ft due to core barre -BEDRO	ARGILLITE. Bedding extremely thin to oderate spacing, planar to undulating, I jam.
-	3 3	C2	117.0 119.0	18 18	75 75			Hard to moderately hard, fresh, gray, aphanitic thin, joints moderately dipping, moderate spaci tight.	ARGILLITE. Bedding extremely thin to ng, planar to undulating, smooth, fresh,
- 120 - -							-102.2 119.0	BOTTOM OF EXPLO	RATION 119.0 FT
- - 125 -									
- - - 130 -									
- - - - - - - - - - - - - - - - - - -									
- 140 -									
- - 145 -									
-									

HALEY ALDRICH	GR				RVATION WELL Well N	lo. HA19-B2 (OW)
	AVE. RES		N, INC.		Riser Pipe Date Insta	32753-006 alled 8 Jul 2019 . A. Fleming See Plan
Driller P. Fischer Initial Water Level (depth b	ne)	10.0 fi			Concrete Ground E	I. 16.8 (est.) Boston City Base
SOIL/ROCK	ys)	10.01		7		
	GRAPHIC	WELL DETAILS	DEPTH (ft.)	ELEVATION (ft.)	WELL CONSTRUCTION	DETAILS
					Type of protective coverCor	npression - pent. bolt
			0.0	16.8	Depth of Roadway Box below ground surf	ace0.0 ft
BITUMINOUS			0.8	16.0	Depth of top of riser below ground surface	e0.1 ft
-		0.0.0.16 0.0.16 0.0.0.16 0.0.10 0.0.0.16 0.0.10			Type of protective casing	Roadway Box
					Length	0.9 ft
-					Inside diameter	6.0 in.
-		φ δ			Depth of bottom of Roadway Box	0.9 ft
-5		ο 10 .0. c τ ο το το τ ο 10 .0 .c τ ο το τ ο το τ ο 10 .0 .c τ ο το			Type of riser pipe S	chedule 40 PVC
-			7.0	9.8	Inside diameter of riser pipe	2.0 in
			1.0	0.0	Depth of bottom of riser pipe	10.0 ft
			9.0	7.8	Type of Seals Top of Seal (ft)	<u>Thickness (ft)</u>
			10.0	6.8	Concrete 0.0	0.8
FILL			10.0	0.0	Bentonite 7.0	2.0
					·	
					Diameter of borehole	4.5 in
					Depth to top of well screen	10.0 ft
					_	nine slotted Sch 40 PVC
-15					Screen gauge or size of openings Diameter of screen	<u>0.010 in.</u> 2.0 in.
					Type of Backfill around Screen	Filter Sand
					Depth to bottom of well screen	20.0 ft
					Bottom of silt trap	
			20.0	-3.2	Depth of bottom of borehole	20.0 ft
20.0 COMMENTS:		<u></u>	20.0	-3.2		

H		Y RIC	н			Т	EST	BORING REPOR	RT				Во	rin	g I	NO.	F	IA1	9-E	33
Proj Clie Con		CA	RGO	VENTU	RES		ION, 329) NORTHERN AVE., BOS	Ton, Ma			Sł			o. 1 J		5 24,	201		
				Casing		npler	Barrel	Drilling Equipmen	t and Proce	edures			nish iller			•		201	9	
Туре	<u> </u>			W/NW	-	S	NX	Rig Make & Model: B57					sa F			Fisc A.		ninc	1	
• •		meter		4/3		3/8	3	Bit Type: Roller Bit				El	eva	tior				est.		
		Neight	` '	300		40	-	Drill Mud: None Casing: HW Drive to 29	.0 ft. NW S	pun to 104.	0 ft		atun			Bo ee F		n Cit	y Ba	as
lam	imer l	-all (in	` '	24		0	-		atic Hamme	er		LU	Juan		3	ee r	-lan			
Ê	Blows in.	, No.	e (II	Readings (ppm)	lodr	Stratum Change Elev/Depth (ft)) 	/ISUAL-MANUAL IDENTIFICA		DESCRIPTIO	N	-	avel	-	San	d	+		eld T ທູ່	es
Depth (ft)	ller B er 6 ir	Sample No. & Rec. (in.)	Sample Depth (ft)	Read	USCS Symbol	ratur Dept	-	(Color, GROUP NAME,				Coarse	Fine	Coarse	% Medium	Fine	Jes	Dilatancy	l ougnness	Plasticity
Le	Sampler I per 6 i	& Re	S D e		SC			structure, odor, moisture, GEOLOGIC INTEF	optional des RPRETATIO	scriptions N)		0 %	% Fir	0 %	We We	% Fir	% Fines	Dilata		Plasticity
+ י	<i></i> о					16.4		-BITUMINOUS (ONCRETE	<u>.</u>						0.				-
					SP SM	0.5 16.0 0.9		light brown poorly graded SA	ND (SP), m	os 0.6 in., no		5	5	5	65	20 20	20	-+	-	
					5101	0.9	Black	re, no odor, moist FILL silty SAND with gravel (SM), r	nps 2.5 in., r	no structure,	/				30	20	20			
					SP		· ·	noist, trace concrete and bricl light brown poorly graded SA		a 0 2 in na					75	25				
					35			ire, no odor, moist	ND (3F), III	JS 0.3 III., 110					15	25				
5 -							Note:	Location precleared with vac	truck to 6.0	ft.										
	7 10 12	S1 10	6.0 8.0	ND	SP			m dense tan to gray poorly gra icture, no odor, moist	aded SAND	(SP), mps 0.	.3 in.,			5	35	55	5			
	10	S2	8.0	ND	SP			gray poorly graded SAND (SF	P), mps 0.1 i	n., no structi	ure, no				30	70				
	1 3 3	11	10.0				odor, v	vet, trace shells -FILL	-											
10 -	2 2 2	S3 14	10.0 12.0	ND	SP			gray poorly graded SAND (Sf vet, trace pockets of organic s			ure, no				20	75	5			
-	3	S4	12.0	ND	SM		Loose	gray silty SAND (SM), mps 0.	1 in., no stru	ucture, no od	lor, wet				15	65	20			
	4 5 5	15	14.0																	
5-	1 1 1 1	S5 23	14.0 16.0	ND	OL/ OH			oft gray ORGANIC SOIL (OL/ r, wet, trace pockets of fine s	<i>//</i>	,	cture,					10	90			
╞	2	S6	16.0	ND	SM			gray silty SAND (SM), mps 0.		ucture, no od	lor, wet,				15	65	20			
	3 2 3	24	18.0				20% -	30% pockets of lean clay, trac	e shelis											
	1 1 1 2	S7 24	18.0 20.0	ND	CL		-	oft sandy lean CLAY (CL), mp 5% - 20% pockets of organics	s 0.3 in., no	structure, n	o odor,				5	25	70			
0+	-			-																
		<u>ا ا ا</u>	ater L	evel Dat	<u>а</u>		1	Sample ID	ا الم/\\	Diagram					l 1ma					
D	ote		Fla	osed	Dep	th (ft) t	0:	O - Open End Rod	R	iser Pipe	Overl	our					5.0			
	ate	Time		hr B	ottom Casing	Bottom of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	F	creen ilter Sand	Rock	Сс	ored	l (fl	t)	:	5.0			
7/9	/19	0710	1	5.0 3	34.0	61.0	9.5	S - Splitspoon Sample G - Geoprobe	G	uttings irout	Samp				22S	, 1C		~ -	~	
									В	oncrete entonite Seal							A1	9-B	3	
ield	Tests	:					S - Slow M - Mediu			plastic L - L None L - Lov							/erv	— Hiah		

H&A-TEST BORING WITH PERM PID COLUMIN HA-LIB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT 6:132753 - 2 HARBOR STREETGINT132753-006 TB_C_OW.GPJ Aug.2, 19

		PRIC	H			T	EST BORING REPORT	F	ïle	No.	Nc 1 lo.). 3275 2	53-0	4A1 006 5	9-B	.3
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] ,	Gra	avel	se	San	d		F	ield ssau	
Dep	Sample	Samp & Re	Sar Depi	PID Re (pr	NSCS	Stra Cha Elev/D	structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
							-FILL-									
25 -	1 1 1 2	S8 8	24.0 26.0	ND	OL/ OH	-7.1 24.0	Very soft gray ORGANIC SOIL (OL/OH), mps 0.1 in., no structure, organic odor, wet						100			
							-ORGANIC DEPOSITS-									
30 -	4 14 27 38	S9 22	29.0 31.0	ND	CL	-12.1 29.0	Hard gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet						100			
35 -	7 10 12 15	S10 24	34.0 36.0	ND	CL		Very stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 1.5 - 2.0 tsf						100			
							-MARINE DEPOSITS-									
40 -	5 6 8 9	S11 24	39.0 41.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 1.25 - 1.5 tsf					-	100			
45 -	5 6 9	S12 11	44.0 46.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet						100			
50 -	1 3 5 6	S13 23	49.0 51.0	ND	CL		Medium stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	s	м	н
											No			-IA1	0.5	

H	ÂLE	RIC	H			ТІ	EST BORING REPORT	F	ile	No.	1 No	3275	53-0		9-B	3
£	SWC	ġ;		sbi	lod	(ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	avel	-	San			Fi		Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
- 55 -	2 3 4 6	S14 23	54.0 56.0	ND	CL		Medium stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf					-	100	s	м	н
60 -	3 3 6 6	S15 23	59.0 61.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.25 - 0.75 tsf					-	100	s	м	н
							-MARINE DEPOSITS-									
65 -	WOR 3" WOH 3"	S16 21	64.0 66.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.0 - 0.5 tsf						100	s	м	н
- 70 -	5 6 3 3 6 6	S17 24	69.0 71.0	ND	CL		Medium stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf					-	100	s	M	н
75 -	3 5 8 7	S18 24	74.0 76.0	ND	CL		Medium stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.0 - 0.25 tsf					-	100	s	M	н
80 -	4 6 7 7	S19 15	79.0 81.0	ND	CL		Medium stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP < 0.25 tsf					-	100	s	м	н
											No			IA1		

Н		RIC	H			Т	EST BORING REPORT	F	ile	i ng No. et N	1	327	h 53-0 of		9-B	3	
£	SWO .	ю Чо Ч	e (f	sɓu	lodr	(t)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel	:	San			F		Tes	st
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Ctrongth
- 85 -	3 4 4 6	S20 23	84.0 86.0	ND	CL		Medium stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	S	м	н	
-							-MARINE DEPOSITS-										
- 90 -	WOR 4 12 11	S21 24	89.0 91.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	S	м	н	
-						-76.6 93.5	Note: Drill action indicates change in density at 93.5 ft.										
- 95 -	37 18 100/ ∖ 5"/	S22 1	94.0 95.4	ND	CL	-78.5 95.4	Hard gray sandy lean CLAY with gravel (CL), mps 0.9 in., no structure, no odor, wet, trace weathered argillite -GLACIOMARINE DEPOSITS- TOP OF BEDROCK 95.4 FT	5	10	5	5	20	55	S	м	L	
-							Note: Drill action and drill wash indicate bedrock.										
-							Note: Advanced roller bit to 99.0 ft.										
- -100- - -							SEE CORE BORING REPORT FOR ROCK DETAILS										
105-																	
110-																	
-																	
		Soil in	lentificat	tion bas	ed on v	visual-ma	nual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No		I	HA1	9-E	3	•

	HAL	EY DRIC	н			со	RE B	ORIN	G REPORT	Boring No. HA19-B3 File No. 132753-006 Sheet No. 5 of 5
	Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove	ery/RQD	Weath- ering	Elev./ Depth (ft)	Visual Desc and Rema	ription
	- 100 — -	3.5 3 3 3.5	C1	99.0 104.0	52 49	87 82			SEE TEST BORING REPORT FO. Hard to moderately hard, fresh, gray, aphanitic / joints moderately dipping, close to wide, planar	ARGILLITE. Bedding extremely thin, to undulating, smooth, fresh, tight.
	- - - 105	3						-87.1 104.0	BOTTOM OF EXPLOR	ATION 104.0 FT
	- - - - 110 -									
T\132753-006 TB_C_OW.GPJ Aug 2, 19	- - - 115 - -									
DT G:\132753 - 2 HARBOR STREET\GIN	- - 120 - -									
HA-TB+CORE+WELL-09 W FENCE.G	- - 125 — - -									
H+A_CORE+WELL-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-09 W FENCE/GDT G/132753 - 2 HARBOR STREET/GINT/132753-006 TB_C_OW/GPU Aug 2, 19	- - 130 — - -									

Project Client Contracto Type nside Diar Hammer V Hammer F () Lammer F () Debth (II) Hammer F	CA or GE meter Veight Fall (in	RGO COLOC (in.) (Ib)	VENTU GIC-EAF Casing HW/NW	RES		,	NORTHERN AVE., BOST	Ton. Ma		Fil	e N	lo.	13	275	3-0	06		
Depth (ff) Hammer V Hammer Rlows Der 6 in. Der 6 in.	meter Veight ⁻ all (in	(in.) (lb)	Casing HW/NW		-	RATION	. INC.	- ,		Sh		No). 1 J	of une	5 24	, 20		
Depth (ff) Hammer V Hammer Rlows Der 6 in. Der 6 in.	Veight ⁻ all (in	(in.) (lb)	HW/NW	Can	npler	Barrel	Drilling Equipment	t and Procedures			nish iller			-		201	19	
Depth (ff) Hammer V Hammer Rlows Der 6 in. Der 6 in.	Veight ⁻ all (in	(in.) (lb)			·		Rig Make & Model: B57					Rep		Fisc		min	a	
Depth (ft) A Jammer Sampler Blows Per 6 in.	Veight ⁻ all (in	(lb)			S	NX	Bit Type: Roller Bit		F			tion				(est	<u> </u>	
Depth (ft) Sampler Blows per 6 in.	all (in	` '	4/3 300		3/8 40	3	Drill Mud: None Casing: HW Drive to 34	0 ft_NW Spun to 87.0 ft	۰ H		tun			Bc	sto	n C	ity B	as
Depth Sampler per 6	No.	•/	24		60	-	Hoist/Hammer: Cat-Head PID Make & Model: Ion	d Doughnut Hammer		LO	cat	ion	5	ee I	Jar	ו		
Depth Sampler per 6	<u> </u>	÷.	sbu	lod	j (j	2 \	/ISUAL-MANUAL IDENTIFICA			Gra	vel	-	Sano	d			eld T	ſes
	ole c. (th (f	Readings (ppm)	Sym	atum ange epth		(Color, GROUP NAME,			Coarse		Coarse	Medium	0	SS	JCY	ness	Plasticity
	Sample No. & Rec. (in.)	Sample Depth (ft)	PID R.	USCS Symbol	Stratum Change Elev/Depth (ft)		structure, odor, moisture, GEOLOGIC INTER	optional descriptions		õ	Fine	Co	Meo	, Fine	Fines	Dilatancy	Toughness	Plasticity
	S⊗ S		_ ₽_	ñ			-BITUMINOUS C			%	%	%	%	%	%		<u>н</u>	ד
				SP	15.5 0.5		light yellow brown poorly grad				5		70		_			
				SM	15.0 1.0	\ structu	re, no odor, moist -FILL·	-	/]	10	10	10	30	20	20			
							silty SAND with gravel (SM), m	nps 3.5 in., no structure, r	10									
						,	Location precleared with vac t	truck to 6.0 ft.										
5 -	04		ND	SP		Madiu	m dense gray to brown poorly	araded SAND (SD) maa	0.2				30	65	5			
24 13 13 14	S1 4	6.0 8.0		55			structure, no odor, wet	graueu SAND (SF), mps	0.2				30	05	5			
3 5 8	S2 12	8.0 10.0	ND	SP			m dense gray poorly graded S re, no odor, wet	AND (SP), mps 0.1 in., no	D				30	65	5			
10 7 WOR/ 4" -1	S3 8	10.0 12.0	ND	SP		Similar	r to above, except loose						30	65	5			
4		12.0					-FILL·	-										
4 4 1 4	S4 5	12.0 14.0	ND	SP		Loose odor, v	gray poorly graded SAND (SF vet	P), mps 0.1 in., no structur	re, no				25	70	5			
3	S5	14.0	ND	OL/		Very s	oft gray sandy ORGANIC SOII	L (OL/OH), mps 0.1 in., no	o					30	70			
15 - 1 1	8	16.0		ОН		structu	re, no odor, wet											
2	S6	16.0	ND	OL/			ay ORGANIC SOIL (OL/OH), I							10	90			
1 2	24	18.0		OH			vet, trace pockets of poorly gra s of lean clay	aueo sano, trace shells, tr	ace									
1 WOR	S7	18.0	ND	OL/	-2.0 18.0	Soft ar	ay ORGANIC SOIL with sand	(OL/OH), mps 0.2 in., no						20	80		+	_
1	24	20.0		ОН		U U	re, faint organic odor, wet, tra ORGANIC DE-	ce shells										
20																		
	Wa	ater Le	evel Dat	a			Sample ID	Well Diagram			5	Sum	' ma	ry	!			
Date	Time		psed	Dep ottom	th (ft) t Bottom		O - Open End Rod	Riser Pipe Screen	Overb	ouro	den	(ft)	8	37.C)		
			= (111.) of C	Casing	of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock			•			5.0			
7/12/19	0705	16	6.0 3	34.0	71.0	9.41	S - Splitspoon Sample G - Geoprobe	ि <u>श्व</u> े. Cuttings Grout	Samp				20S	, 1C				
								<u>مْ</u> Concrete Bentonite Seal	Borir	ng	No	о.		-	IA1	9-E	54	_
ield Tests	:					S - Slow M - Mediu		ity: N - Nonplastic L - Lov rength: N - None L - Low							Verv	Hia	 h	

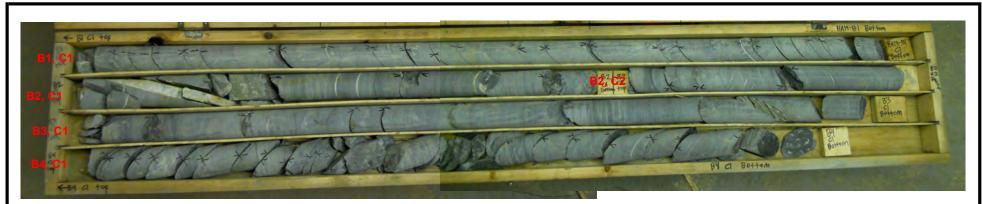
H&A-TEST BORING WITH PERM PID COLUMN HALLB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT 6:132733 - 2 HARBOR STREETGINT13273-006 TB_2_OW.GPJ Aug 2, 19

Н		RIC	H			T	EST BORING REPORT	F	ile	ing No. et N	1	327	l '53-(of	HA1	9-E	4
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] ,	Gra	ave	se	San	d		F		Test
Dep	Sample	Samp & Re	Dep	A DIA	nscs	Stra Cha Elev/D	structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Cos	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
- - 25 -	4 2 2 2	S8 22	24.0 26.0	ND	OL/ OH		Soft gray ORGANIC SOIL with sand (OL/OH), mps 0.1 in., no structure, organic odor, wet					20	80			
-							-ORGANIC DEPOSITS-									
- 30 -	2 3 3 3	S9 15	29.0 31.0	ND	OL/ OH		Medium stiff gray ORGANIC SOIL (OL/OH), mps < 0.1 in., no structure, organic odor, wet						100			
- 35 -	7 9 7 9	S10 1	34.0 36.0	ND	CL	-18.0 34.0	Very stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet						100	S	H	М
- 40 -	13 17 21 23	S11 4	39.0 41.0	ND	CL		Hard gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet						100	S	н	м
							-MARINE DEPOSITS-									
- 45 -	4 7 7 8	S12 24	44.0 46.0	ND	CL		Stiff gray lean CLAY (CL), mps < 0.1 in., no structure, no odor, wet PP 0.5 - 0.75 tsf						100	S	н	н
- 50 -	5 6 8 8	S13 3	49.0 51.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet						100	S	М	н
.					<u> </u>		nual methods of the USCS as practiced by Haley & Aldrich, Inc.			ng				HA1	9-F	 34

		Y RIC	H			T	EST BORING REPORT	F	ile	ing No. et N		1327	ا /53-0 of	006		34
	SN	o' 🔶		gs	0	(ff)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	ave	-	Sar					Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
- 55 -	4 4 6 6	S14 24	54.0 56.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.25 - 0.5 tsf						100	S	м	н
- 60 -	3 5 6 7	S15 24	59.0 61.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.5 - 0.75 tsf						100	s	м	н
							-MARINE DEPOSITS-									
- 65 -	3 5 7 7	S16 21	64.0 66.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.5 - 0.75 tsf						100	S	м	н
- 70 -	5 7 8 8	S17 14	69.0 71.0	ND	CL		Stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.0 tsf						100	S	м	н
75 -	3 4 3 6	S18 22	74.0 76.0	ND	CL	-61.0 77.0	Medium stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.25 - 0.75 tsf Note: Drill action indicates change in material and density at 77.0 ft.						100	s	м	н
80 -	27 100/ 	S19 3	79.0 79.9	ND	SM	//.0	Very dense gray silty SAND with gravel (SM), mps 0.8 in., no structure, no odor, wet, trace lean clay, trace weathered argillite -GLACIAL TILL-	5	10	10	20	30	25			
							nual methods of the USCS as practiced by Haley & Aldrich, Inc.			ng					19-Е	34

	HAL	EY	H			T	EST BORING REPORT	F	ile	ing No.	1	327	1 53-0 of	HA1	9-B	4
			1	s	<u> </u>	f)		-	avel	-	0. San				eld ⁻	Test
(#)	BIO	i Z E	ble (#	n) (in	dmy	oth (j	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION			-		-				
Danth (ft)	Sampler Blows	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity Strength
- 8	58 5 - 91 84	9	84.0 86.0	ND	SM		Very dense gray silty SAND with gravel (SM), mps 0.7 in., no structure, no odor, wet	5	10	5	20	40	20			
	74						-GLACIAL TILL-									
						-71.0	-TOP OF BEDROCK 87.0 FT									
F						87.0	Note: Drill wash indicates top of bedrock. Advanced roller bit to 89.0 ft.									
F							69.0 ft.									
-							SEE CORE BORING REPORT FOR ROCK DETAILS									
- 90	D –															
F																
-																
2 – – 1 6 6 0 4																
F																
<u>.</u>																
200																
5																
	NOT	E: Soil ic	lentifica	tion bas	ed on v	visual-ma	nual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	•	I	HA1	9-B	4

H&A-TEST BORING WITH PERM PID COLUMN HALIB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT G/13273-2 HARBOR STREET/GINT/13273-006 TB_C_OW.GPJ Aug 2, 19


	HAL	EY DRIC	Н			CO	RE B	ORIN	G REPORT	Boring No. HA19-B4 File No. 132753-006 Sheet No. 5 of 5
ĺ	Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Desc and Rema	ription arks
ŀ						70			SEE TEST BORING REPORT FO	
	- 90 -	4 3 3	C1	89.0 94.0	46 35	77 58			Moderately hard, fresh, gray, aphanitic ARGILLI moderately dipping, wide to close, planar to und	TE. Bedding extremely thin, joints lulating, smooth, fresh, tight
		3 3						-78.0 94.0	-BEDROG BOTTOM OF EXPLOF	
	- 95 -									
	- 100 - - -									
CINT/132753-006 TB_C_OW.GPJ	- 105 - - -									
GDT G:\132753 - 2 HARBOR STREE1	- - 110 - - -									
B HA-TB+CORE+WELL-09 W FENCE.	- 115 - - -									
H+A_CORE+WELL 09 HALIB09-BOS GLB HATB+CORE+WELL-09 W FENCE.GDT G112273-2 LARBOR STREETIGINT112753-006 TB_C_OW.GPJ Aug 2, 19	- - 120 - - -									

		PRIC	Н			Т	EST	BORING REPOR	RT					-			A19)-B	5
Proj Clie Cor		CA	RGO	BOSTO VENTU GIC-EAF	RES) NORTHERN AVE., BOS ⁻ , INC.	ΓΟΝ, MA		Sh Sta	ieet art	No). 1 J		2 24,	6 2019 2019		
				Casing	San	npler	Barrel	Drilling Equipment	and Procedures			nish iller			Shel			•	
Туре	e			HW		s		Rig Make & Model: B57	Mobile Drill Truck		H8	ka f	Rep).	Α.	Fler	ning		
Insic	le Dia	meter	(in.)	4	1:	3/8		Bit Type: Roller Bit Drill Mud: None				eva itun		1			est.) i City	Ra	
	nmer F	Veight ⁻ all (in	` '	300 24		40 80	-	Casing: HW Drive to 9 f Hoist/Hammer: Cat-Hea PID Make & Model: Ion	d Doughnut Hammer			cati		S	ee F			Da	
(£	slows 1.	No.	el (II	ings	mbol	h (ff)	۱ ا	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTIO	N I		avel		Sano	d		U U	d Te	Т
Depth (Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTEF	optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy Touchness	Plasticity	
0 -					SP	15.2		-BITUMINOUS C						75	25				+
					SM	14.7	I an to	light brown poorly graded SA re, no odor, moist	ND (SP), mps 0.1 in., no	/	5	5	10		35	20	-+	+ ·	╉
							Black s	-FILL silty SAND (SM), mps 0.7 in., rick, 5% - 10% concrete		/ bist,									
							Note:	Location precleared with vac	truck to 6.0 ft.										
								-FILL	-										
5 -	22 8 9	S1 7	5.0 7.0	ND	SM			n dense black to dark gray sil re, no odor, moist	ty SAND (SM), mps 0.2 i	n., no				30	45	25			
	12				CM.		Madiu							200	45	~			
	9 6 6 4	S2 11	7.0 9.0	ND	SM		structu of poor	n dense black to dark gray sil re, no odor, moist, trace pock ly graded sand						30	45	25			
10 -	2 2 2 2	S3 4	9.0 11.0	ND	OL/ OH	6.5 9.0	5	ay ORGANIC SOIL (OL/OH), vet, trace shells	mps 0.1 in., no structure	no						100			T
								-COHESIVE	E FILL-										
15 -	1 2 2 2	S4 22	14.0 16.0		CL			ay lean CLAY (CL), mps 0.2 in ockets of black poorly graded		wet,					-	100			
20 -	2 1 1 2	S5 6	19.0 21.0		CL		-	oft gray to black lean CLAY (C r, wet, trace pockets of poorly		ure,					5	95			
		Wa	ater L	evel Dat				Sample ID	Well Diagram			S	Sum	ma	ry				<u> </u>
Da	ate	Time			ottom	th (ft) t Bottom		O - Open End Rod T - Thin Wall Tube	Riser Pipe	Overt			`	<i>'</i>	5	1.0			
					Casing			U - Undisturbed Sample	Filter Sand	Rock Samp			(ft	:) 11	ç				
								S - Splitspoon Sample G - Geoprobe	Grout Grout Concrete	Bori) .	11		A19	9-B	5	
Field	l Tests	:					S - Slow		Bentonite Seal	w M-M	ledi	um	н-						
			nartic	Toughr	iess: l	Low	M - Mediu		rength: N - None L - Low	M - Meo	diun	<u>1 H</u>	- Hi	igh	V - \	/ery l	High		

Н		RIC	н			T	EST BORING REPORT	F	ile	i ng No. et N	1	327	ا 53-0 of	1A1 006 2	9-E	15
	SWC	o (;	0	gs	log	(ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	<u> </u>	avel		San			F		Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
							-COHESIVE FILL-									
25 -	1 2 2 2	S6 13	24.0 26.0	ND	OL/ OH	-8.5 24.0	Gray ORGANIC SOIL (OL/OH), mps 0.1 in., no structure, organic odor, wet, trace shells						100			
							-ORGANIC DEPOSITS-									
30 -	1 1 1 2	S7 24	29.0 31.0	ND	OL/ OH		Gray ORGANIC SOIL (OL/OH), mps 0.1 in., no structure, organic odor, wet, trace peat fibers and shells						100			
35 -	8 10 16 17	S8 24	34.0 36.0	ND	CL	-18.5 34.0	Very stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 3.0 - 4.5 tsf						100	S	H	М
40 -	6 6 14 20	S9 22	39.0 41.0	ND	CL		Very stiff gray lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 2.0 - 2.5 tsf						100	s	н	М
45 -	46 29 38 39	S10 4	44.0 46.0		CL		-MARINE DEPOSITS- Hard gray to olive brown lean CLAY (CL), mps 0.1 in., no structure, no odor, dry PP 4.0 - 4.5 tsf						100	S	Н	М
50 -	3 4 5 7	S11 23	49.0 51.0		CL	-35.5 51.0	Stiff gray to olive brown lean CLAY (CL), mps 0.1 in., no structure, no odor, wet PP 0.75 - 1.5 tsf -MARINE DEPOSITS- BOTTOM OF EXPLORATION 51.0 FT						100	s	м	Н
																35

APPENDIX E

Rock Core Photographs

BORING	CORE	CORE RUN	CORE RUN EL.	REC	OVERY	RQD	NOTE 2
ID	ID	DEPTH (FT)	(FT, BCB)	IN.	%	IN.	%
HA19-B1	C1	114.0 TO 119.0	-97.8 TO -102.8	54	90	45	75
HA19-B2	C1	114.0 TO 117.0	-97.2 TO -100.2	36	100	22	61
HA19-B2	C2	117.0 TO 119.0	-100.2 TO -102.2	18	75	18	75
HA19-B3	C1	99.0 TO 104.0	-82.1 TO -87.1	52	87	49	82
HA19-B4	C1	89.0 TO 94.0	-73.0 TO -78.0	46	77	35	58

NOTES:

1. "X" INDICATES DRILL BREAK; "/" INDICATES JOINT.

2. "RQD" INDICATES ROCK QUALITY DESIGNATION (PERCENT OF ROCK PIECES RECOVERED EQUAL TO OR GREATER THAN 4 IN. IN LENGTH).

	SOUTH BOSTON INNOVATION CAMPUS 2 HARBOR STREET / 329 NORTHERN AVENUE BOSTON, MASSACHUSETTS PHOTOGRAPH OF BEDROCK CORE	
\haleyaldrich.com\share\bos_common\132753 - 2 Harbor Street\006 - Design\Subsurface Data Report\Appendix F - Rock Core Photos\[2019-0904-HAI-SBIC-Rock Core Photos.xlsx]Photos	FILE NO. 132753-006	Sept. 2019

APPENDIX F

Test Pit Logs and Annotated Photographs

	LEY LDRICI	1		IE	ST PIT LOG				63	LF		10.			5-1	Ρ́	1
Proje	ect	SOUTH E	BOSTO	N INNOVATION	CAMPUS			File	e N	0.		132	2753	-006	6		
Loca				BOR ST/329 NC	ORTHERN AVE, BOS	STON, M	IA	Н8	kA F	Rep	1	S.	Sha	y			
Clien	-	ICCNE LI		T CO., INC.				Da	te		:	22 J	ul 2(019			
	pment Use			M320 Excavator	r			We	ath	or	8	85 F.	sur	nv			
	nd El.: 16.9		-	Location: Se	e Plan	Grou	ndwater depths/enti										-
El. Da	atum: BC	B					·	-	•			_	.,				
(ft)		Stratum			UAL-MANUAL IDENTIFI	CATION A	ND DESCRIPTION			avel	1	and	_	Fi	eld ၂		t
Depth (ft)	Sample ID	Change Elev./ Depth (ft)	USCS Symb		OUP NAME & SYMBOL, structure, odor, moistu GEOLOGIC INT	re, optiona		Э,	% Coarse	% Fine	% Coarse	% Medium	% Fines	Dilatancy	Toughness	Plasticity	(
0 -					-ASP	HALT-										Ē	-
		16.5 0.4 16.1	SP	Yellow brown no structure,		(SP), no	oversized, mps 0.25 i	n.,				65 3	5				
1 -		0.8	SP		oorly graded SAND w ture, no odor, moist, t		P), 5 - 8% oversized, k	mps	5	5	15	40 2	5 10	<u>,</u> -			•
2 -		14.8 2.1	 GP), 10% oversized, mps pacted as dense grade		20	40	20	10 1	0				
3 -		13.9 3.0				ī. <u>.</u>						_					-
			SP	Yellow brown odor, moist	poorly graded SAND	(SP), mp	os 0.4 in., no structure	, no				65 3	5				
4 -		10.5		Note: Concre	ete protective slab ove	er tunnel	encountered at 4.4 ft.										
		12.5 4.4			BOTTOM OF EXF						$\left \right $	+	+			-	
Dbstru	ictions:		pit		surface elevation by Fe ifts and compacted with ictor.		Dilatancy Toughness	R·		bid	S -	Slow		- Non - Higl			-
								- Nonpla	astic	L -	Low	M -	Med	ium	H - H	•	
at d	Standing	Water in O Dry	Comple	<mark>ted Pit</mark> ft		Boulder umber	<u>s</u> Approx. Vol. (cu.ft) =	Pit						ons 6 x			

ΗA	LEY LDRICH	1		TES	ST PIT LOG			Te	st	Pi	t N	0.	H	419)-T	Ρ2
Proje	ect s	SOUTH E	BOSTON	NNOVATION	CAMPUS			File	No			1327	753-	006		_
Loca	tion	CORNER	2 HARBO	OR ST/329 NC	RTHERN AVE, BOS	STON, M	IA	H&A		ən		S. S	Shav	,		
Clien	it I	CCNE LL	C							-1-						
Cont	ractor	JAMES V	V. FLETT	CO., INC.				Date	e		24	Jul 2	2019)		
Equi	pment Use	d Ca	terpillar N	320 Excavator				Wea	the	r	Mid	-60s	5 F, I	mos	tly c	lo
	nd El.: 16.2 atum: BCE		1	.ocation : Se	e Plan	Grou slov	ndwater depths/entry /ly at depth of 6.2 ft or	r ates nly at N	(in.) VV	/ miı cor	n.): ner (See of pi	epaç it	ge v	ery	
(ft)		Stratum		VIS	UAL-MANUAL IDENTIFIC		ND DESCRIPTION	(Grav		Sar			Fie	ld T	es
Depth (Sample ID	Change Elev./ Depth (ft)	USCS Symbol	(Color GR	OUP NAME & SYMBOL, 9 structure, odor, moistur GEOLOGIC INT	re, optiona			% Coarse	% Fine	% Coarse % Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -					-ASPI	HALT-	-		~	~ .	88	× ×	8		-	<u> </u>
		15.9 0.4	SP			(SP), no	oversized, mps 0.25 in	.,		+	65	5 35	-			
		15.0		no structure,		LL-										
2 -		1.2	SM	1.5 ft as rubb	b black silty SAND with le fill, no structure, no o and cinders, occasior	odor, mo		ıps	5	10	15 1:	5 35	20			
4 -				Note: Expose	ed 4-in. ductile iron pip	e on cor	ncrete at 2.7 in.									
		11.2 5.0	<u>-</u>	Gray lean CL	AY (CL)											_
6 -				Note: Possib	le concrete duct bank	at 6.5 ft.										
											50	50				
8 -					-COHESI	IVE FILL	-									
		7.7 8.5			BOTTOM OF EXP t did not encounter rer th CA/T tunnel.											
	ictions: Pipe				surface elevation by Fe			Field	d Te	sts			1			_
	oncrete duc		6.5' pit ba	ckfilled in 6-in. li ory plate compa	fts and compacted with ctor.	а	Dilatancy Toughness Plasticity N - Dry Strength N - None	L - Lo Nonplas	w stic	М- L-L	.ow	um M - N	H - Iediu	m ⊦	I - Hi	
	Standing V		Complete	d Pit		Boulder Imber	<u>s</u> Approx. Vol. (cu.ft)				it Di					
ot o	lepth	Dry	ft				· · · · · · · · · · · · · · · · · · ·	Pit L	ana	th v	۰ ۱۸/ ic	Hth (ft) ·	10 v	65	ft

Proj					CAMPLIS			File	N	<u> </u>		15	3275	32.0	106		
Loca					CAMPUS ORTHERN AVE, BOS	TON. M	1A								000		
Clier		ICCNE LL			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, i ei i i, ii		H&/	A R	Rep		S	. Sh	nay			
-	-			T CO., INC.				Dat	е			23	Jul	201	9		
Equi	pment Use	d Ca	terpillar	M320 Excavato	r			Wea	ath	er	(68 F	-, R	ain			
Grou	Ind El.: 16.3	}		Location: Se	e Plan	Grou	ndwater depths/entry	, rates	(in	./mi	in.)	: [Dry				
EI. D	atum: BCE	3															
(ft)		Stratum			SUAL-MANUAL IDENTIFIC		ND DESCRIPTION	-		vel		Sand	1	_		T bl	est
Depth (Sample ID	Change Elev./ Depth (ft)	USCS Symbo		OUP NAME & SYMBOL, structure, odor, moistur GEOLOGIC INT	e, optiona	ed, maximum particle size al descriptions ATION)	,	% Coarse	% Fine	6 Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -						HALT-			8	8	~	~	~	~			<u> </u>
		15.9 0.4	SP	Yellow brown no structure,		(SP), no	oversized, mps 0.25 ir	۱.,				65	35			_	
		15.2 1.1	 SM	Dark brown s no structure,	ilty SAND with gravel (no odor, moist	(SM), 5 t	o 8% oversized, mps 4	- in.,	5	10	15	15	35	20	-+	- +	
2 -		14.7 1.6	 GP	Gray poorly g		and (GP nly comp), 10% oversized, mps acted dense grade	3-	20	40	20	10	10	-+	-+		
4 -	_				-FI	LL-											
6 -				Note: Few sp	plintered pieces of woo	od at 6.2	ft.										
		9.1 7.2		odor, moist Note: Hand e	excavated 1.5' x 4' are	ea in cen		no			_	50	50	- +			
		8.4 7.9		protective sla	b over tunnel encounte BOTTOM OF EXP												
 Dbstru	uctions:		Re	marks: Ground	surface elevation by Fe	ldman;		Fiel	d T	ests							
			pit l		ifts and compacted with		Dilatancy Toughness Plasticity N - Dry Strength N - None	L - Lo Nonpla	ow stic	L -	- Me Low	ediur v M	n l -Me	H - H ediur	п́Н	- Hi	•
	Standing	Nater in (l Complet	ed Pit		Boulder Imber	, ,	, L - LU					nens	-			(
						unnor	(1000000×100) (011 ft)	Pit L									

Δ		H			ST PIT LOG											ΓP4	
Proje								File	e No	0.		13	275	3-00	6		
Loca Clier		CORNER		3OR ST/329 NO	ORTHERN AVE, BOS	TON, N	1A	Н&	AF	Rep		S.	Sha	ay			
-	-			T CO., INC.				Dat	te		:	22 .	Jul 2	019			
Equi	pment Us	ed Ca	aterpillar	M320 Excavator	r			We	ath	er	8	35 F	, mo	ostly	sun	ny	
Grou	Ind El.: 16.4	4		Location: Se	e Plan	Grou	ndwater depths/entry	/ rates	s (in	ı./m	in.):	D	ry				-
EI. D	atum: BC	B															
(¥		Stratum			SUAL-MANUAL IDENTIFIC	ATION A	ND DESCRIPTION			ivel		and ⊏	_		ield	Test	
Depth	Sample ID	Change Elev./ Depth (ft)	USCS Symbo		OUP NAME & SYMBOL, % structure, odor, moisture GEOLOGIC INTE	e, optiona	ed, maximum particle size, al descriptions ATION)	,	% Coarse	% Fine	% Coarse	% Mediur	% Fine	70 FILLES	Toughness	Plasticity	, ,
0 -					-ASPH	IALT-											-
		16.0 0.4	SP	Yellow brown no structure,		(SP), no	oversized, mps 0.25 in	l.,				65 3	35			+	
1 -	-	15.3			-FIL	_L-											
		1.1	SP		cture, no odor, moist, ti	race bri	P), 5 to 8% oversized, ck	mps	5	5	15	40 2	25 1	0			
		14.6 1.8), 10% oversized, mps			40		10	-			∔.	
2 -				in., no structu material	ire, no odor, moist, higł	hly com	oacted as dense grade										
3 -	-				-FIL	_L-											
4 -		12.3															
		4.1	SP	Yellow brown odor, moist	poorly graded SAND ((SP), m	os 0.4 in., no structure,	no				50 \$	50	Ť	+ ·	+-	-
		11.0		Note: Concre	-FIL ete protective slab over		at 4.8 ft.										
		11.6 4.8			BOTTOM OF EXPL	LORATI	ON 4.8 FT										
Thetri	uctions:			marks: Ground	surface elevation by Fel	dman.	1	Fie	Id T	ests							-
			pit k		ifts and compacted with		Dilatancy Toughness Plasticity N - Dry Strength N - None	R - L - L Nonpla	Rap _ow	oid M L -	S - - Me Low	M٠	n ⊢ -Meo		gh H-I	•	
	Standing	Water in (Complete	ed Pit		Boulder mber			Te	est	Pit I	Dim	ens	ions	(ft)		
	depth	Dry		ft	12 to 24		$\frac{1}{1}$	Pit I	en	ath	v 1A	lidth	(ft)	6 2	v 1	0 ft	

Project SOUTH BOSTON INNOVATION CAMPUS File No. 122753-006 Location CORNER 2 HARBOR STI329 NORTHERN AVE, BOSTON, MA H&A Rep S. Shay Cient ICONE LLC JAMES W, FLETT CO., INC. Date 25 Jul 2019 Equipment Used Caterpliar M320 Excavator Groundwater depths/entry rates (Inrin). Dy Et. Datum: BCB Location: See Plan Groundwater depths/entry rates (Inrin). Dry Et. Datum: BCCS Location: See Plan Groundwater depths/entry rates (Inrin). Dry 0 Sample USCS USCS Intro entry of the companies anion Graved Sand Sand 0 -ASPHALT: Intro entry of the companies anion Graved Sand Sand File Acc 1 15.2 -SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in, no Intro acc Intro acc 1 15.4 -SP Date brown poorly graded SAND (SP), no oversized, mps 3 20 40 20 10 10 Intro acc 2 - - - - - - File. 3 - - - - - - - 4 - 16.2 - - - - 2.4 - -						_											_	+												┥	╀		_	_										_		_								_	_	-																															-	-		-		-	-																		_
Client ICONE LLC H&A Rep 5. Shay Contractor JAMES W. FLETT CO., INC. Date 2. Shay Equipment Used Caterpillar M320 Excavator Date 2. Shay Ground EL: 16.6 Location: See Plan Groundwater depths/entry rates (in/min.): Dry Et Datin: BCB Control is See Plan Groundwater depths/entry rates (in/min.): Dry Et Sample USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Crawel Sand Sand Image: Symbol USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Crawel Sand Sand Image: Symbol USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Crawel Sand Sand Image: Symbol USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Crawel Sand Sand Image: Symbol USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Crawel Sand Image: Simon Image: Symbol USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Crawel Sand Image: Simon Image: Symbol USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Crawel Sand Image: Simon Image: Symbol USCS VISUAL-MANUAL DENTIFICATION AND DESCRIPTION Image: Simon Image: Simon Image: Symbol USCS <th></th> <th></th> <th>;</th> <th>06</th> <th>00</th> <th>3-0</th> <th>53</th> <th>27</th> <th>13</th> <th>1</th> <th></th> <th></th> <th>0.</th> <th>No</th> <th>e N</th> <th>ile</th> <th>Fil</th> <th>F</th> <th></th> <th>F</th> <th>Fi</th> <th>Fi</th> <th>-il</th> <th>ile</th> <th>ile</th> <th>le</th> <th>е</th> <th>el</th> <th>) (</th> <th>• •</th> <th>N</th> <th>Ν</th> <th>N</th> <th>Ν</th> <th>r</th> <th>ſ</th> <th>) </th> <th>) </th> <th>)</th> <th>9</th> <th>Э</th> <th>e</th> <th>9</th> <th>9</th> <th>;</th> <th></th> <th></th> <th></th> <th>1</th> <th>ľ</th> <th>ľ</th> <th>N</th> <th>N</th> <th>ľ</th> <th>r</th> <th>ľ</th> <th>ľ</th> <th>ľ</th> <th>ľ</th> <th>ľ</th> <th>1</th> <th></th> <th>)</th> <th>9</th> <th>e</th> <th>le</th>			;	06	00	3-0	53	27	13	1			0.	No	e N	ile	Fil	F														F	Fi	Fi	-il	ile	ile	le	е	el) (• •	N	Ν	N	N	N	N	N	N	N	N	N	N	N	Ν	r	ſ)))	9	Э	e	e	e	e	e	e	e	e	e	e	e	e	e	e	e	9	9	;				1	ľ	ľ	N	N	ľ	r	ľ	ľ	ľ	ľ	ľ	1)	9	e	e	e	e	e	e	e	e	e	e	le
Contractor JAMES W. FLETT CO., INC. Date 25 Juli 2019 Equipment Used Caterpillar M320 Excavator Setting 2019 Weather 806 F, party cl Ground EL: 16.6. EDatum: Location: See Plan Groundwater depths/entry rates (in/min.): Dry ED Sample Bratum Depth Symbol VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Growel Sand Structure, code: mobilize, optional descriptions Single B						ау	ha	. S	S.	;		р	Rep	R	A	&	H															F	н	Hð	-18	18	8	&	k A	A	A	A	A	4	1	۰ F	F	F	F	F	F	F	F		1		١	4	A	A	A	A	A	Ą	A	k/	Z /	} ./	} ./	k /	k/	k/	k,A	A	A	A	A	Δ.	A	A	A	A	A	4	4	١	١	١	١	١	١	١	١	١	١	4	4	A	A	A	A	J	./	k/	Z .	3 .	8				
Ground EL: 16.6 EL Datum: BCB Condition: See Plan Groundwater depths/entry rates (in,/min.): Dry Et Datum: BCB Sinthum ID USCS Depth (Coor GROUP NAME & SYMBOL, % oversided, maximum particle size, structure, on coder, dry Groundwater depths/entry rates (in,/min.): Dry Image: Stratum Edg of ID USCS Depth (th) USCS Symbol VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Coor GROUP NAME & SYMBOL, % oversided, maximum particle size, structure, on coder, dry Groundwater depths/entry rates (in,/min.): Dry Image: Im				9	19	:01	20	Jul	5.	25				•	te	at	Da	1														C	D	Da	Da)a	a	at	Ite	te	te	e	е	e	9)								•	è	•	e	е	e	te	te	te	te	te	te	t	at	t	t	Ite	t	t	te	te	te	te	te	te	te	te	te	e	e	e	e	e	e	è	è	e	e	e	e	e	e	e	e	e	e	te	te	te	t	t	ıt	ıt	ıt	ıt	ıt	at	at
EI. Datum: BCB Sample Stratule USCS USUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Fit 0 ID Depth USCS USCS USUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Fit 0 ID Depth USCS USCS USUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Fit 0 ID Depth Symbol Celor GROUP NAME & SYMBOL, % oversized, maximum particle size, structure, no doc, mostructure, no doc, doc, mostructure, no doc, doc, mostructure,	oud	วนเ	loı	/ cl	۱y (arl	pa	F,)s	80		•	er	th	at	lea	W	V													,	v	w	W	Ne	Ve	/e	ea	ea	at	at	at	ati	atl	tł	th	h	h	h	h	h	h	th	tł	tł	tl	It	at	at	at	a	a	a	a	ea	ee	98	98	98	98	ee	ee	ea	ea	ea	a	a	a	a	a	a	at	at	at	at	It	t	t	tl	t	t	t	t	t	t	nt	at	at	a	а	a	a	98	98	ea	ea	ea	ea	ea	ea	e
Employee Sample Stratum Change (b) (b) USCS Elev/ (b) USCS Symbol UNUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color GROUP MARE & SYMBOL, % oversized, maximum particle size, structure, % oversized, maximum particle size, GEOLOGIC INTERPRETATION) Gravel Sample geology Gravel Sample geology Sample geology Sample geology Gravel Sample geology Sample geology Gravel Sample geology Sample geology Sample geology Gravel Sample geology Sample ge							,	Dry	С):	n.	ni	n./n	(in	s (i	es	rate	'y ra	try	ntr	entr	ent	ent	ent	ent	ent	ntr	try	ry	y i	ra	rat	at	ate	te	te	es	es	s	s (s (; (i	(i	(i	(iı	(ir	ir	(iı	(iı	(i	(i	(i	; (s (5 (5 (5 (5 (s	s	s	s	s	s	s	s	s	s	s	s	s	S	5 (5 (5 (; (((((i	(((; (5	s	s	s	s	s	s	s	s	s	s	25															
Sample B Sample Dip USCS Dip USCS Symbol USCS (coor RedUP NME & SMEQ), % or easy and market ester. structure, odd, mailer exploring descriptions GEOLOGIC INTERPRETATION) B																																																																		_	_	-	-	_	_	_		_	_																													_	-	-	-	-	-	_	_
0 -ASPHALT- -ASPHALT- -ASPHALT- 1 16.2 0.4 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 65 35 1 15.4 -SP Dark brown poorly graded SAND with silt (SP), 5 to 8% oversized, mps 6 5 15 (40) 25 (10) - 2 - - - - - - - - 3 -<	eld Te	ld s	<u>eld</u> 	Fie		+							ve	-																								-	-	_																									_	-					-	-	-	-	-	-	-																	_							_	-	-								-
0 -ASPHALT- -ASPHALT- -ASPHALT- 1 16.2 0.4 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 65 35 1 15.4 -FILL- -FILL- - - - - 2 - - - - - - - - 2 -	Toughness	ughne	andru	atancy	atancv	Fines	Fines	Fine	5 5 5 1	Mediu	Coars	2	Fine	Coars	Coars			e,	ze,	size	size	e siz	e siz	e siz	e siz	siz	size	ze,	e,	Э,											Coars	Coars	Coars	Coars	Coars	Coals								Coars	Coars	Coars	Coars	Coars	Coare	o are	0000	0000	0000																0000	0000	2000		Coare C	Coare	Coars	Coare	Coare C	0.000			,																				
1 16.2 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 65 35 1 15.4 FILL- -FILL- -FILL- 2 - FILL- FILL- 3 - FILL- FILL- 14.2 -GP Gray poorly graded GRAVEL (GP) with sand, 10% oversized, mps 3 20 40 3 - FILL- FILL- FILL- 4 - 14.2 GP Gray poorly graded GRAVEL (GP) with sand, 10% oversized, mps 3 20 40 20 10 10 3 - -	Ē	Ē	Ē	ā		<u>,</u>	%	%	-	%	%	ę	%	<u> </u>	%	+																							č	70	%	%	%	%	\$	2	2	2	2	2	2	2	2	<u></u>	\$	%	%	%	%	%	/0	6	6	č	, c									, e	, e	ò	ò	ò	6	6	ò	70	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	6	2	č										+
1 15.4 -SP -FILL- 2 -SP -Dark brown poorly graded SAND with sill (SP), 5 to 8% oversized, mps 5 5 15/40 25 10 2 - <td></td>																																																																																																															
2								35	5	65							סו	., no	n.,	in.	5 in	.5 ir	.5 iı	.5 ii	.5 iı	5 ir	in	in.,	٦.,	., r	n	no	10	0)																																																																												
2																																																																																																															
2 -	-+		╞		·	0		25		40	15	5	5	5	5	-			<u>d.</u> r	ed.	zed	zed			zec	zed	ed.	d.	Ī	m	m			s	s			-			-5		5	5	5	5	5	;	5	5	;	;	5	5	5	5	5		-5	-5	- <u></u>	-	-	_				-	-									_	-	-	-	-5	-5	-5	5	5	5	5	5	5	5	5	5	5	5	5	5	-5	-	_					-	-	-	-	-	ł	+
3 -																		, -	-, -	,							,	,	., .			.1																																																																															
3 - - GP Gray poorly graded GRAVEL (GP) with sand, 10% oversized, mps 3 20 40 20 10 10 3 -																																																																																																															
3 - GP Gray poorly graded GRAVEL (GP) with sand, 10% oversized, mps 3 20 40 20 10 10 - 3 -																																																																																																															
3 - 12.7 .FILL- 4 - 3.9 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 12.0 12.0 Note: Concrete protective slab over tunnel encountered at 4.6 ft. 12.0 4.6 BOTTOM OF EXPLORATION 4.6 FT 12.0 Note: Concrete protective slab over tunnel encountered at 4.6 ft. 12.0 BOTTOM OF EXPLORATION 4.6 FT	-+		+		·	. +	\vdash	10	<u></u>]−	10	20	0	40	0	20	-															3	3 -	-	_	_		-	+	2	2	20	20	20	20	20	20	0	0	0	0	0	0	0	0	20	20	20	20	2	2	2	2	2	2	2	:		L	L		:	:		2	2	2	2	2	2	2	2	2	2	2	20	20	20	20	20	20	20	20	20	20	20	20	2	2	2	2	2	2	:		l	l	l	l	l	╞	+
4 12.7 3.9 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 65 35 12.0 12.0 Note: Concrete protective slab over tunnel encountered at 4.6 ft. 65 35 12.0 4.6 BOTTOM OF EXPLORATION 4.6 FT 65 35 Distructions: Remarks: Ground surface elevation by Feldman; pi backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Diatancy R-Rapid S-Slow N-None TougIness L-Low M-Medium H-High V- Diatancy R-Rapid S-Slow N-None I-Low M-Medium H-High V-																		Ð	de	ade	rade	rad	grad	grac	rad	rad	ade	de	e	9																																																																																	
4 3.9 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 65 35 12.0 12.0 Note: Concrete protective slab over tunnel encountered at 4.6 ft. 65 35 4.6 BOTTOM OF EXPLORATION 4.6 FT 1 1 1 Destructions: Remarks: Ground surface elevation by Feldman; pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy R-Rapid S - Slow N - None Plasticity N - Nonplastic L - Low M - Medium H - High V -																																																																																																															
4 3.9 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 65 35 12.0 12.0 Note: Concrete protective slab over tunnel encountered at 4.6 ft. 65 35 4.6 BOTTOM OF EXPLORATION 4.6 FT 1 1 1 Destructions: Remarks: Ground surface elevation by Feldman; pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy R-Rapid S - Slow N - None Plasticity N - Nonplastic L - Low M - Medium H - High V -																																																																																																															
4 3.9 SP Yellow brown poorly graded SAND (SP), no oversized, mps 2.5 in., no 65 35 12.0 12.0 Note: Concrete protective slab over tunnel encountered at 4.6 ft. 65 35 4.6 BOTTOM OF EXPLORATION 4.6 FT 1 1 1 Destructions: Remarks: Ground surface elevation by Feldman; pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy R-Rapid S - Slow N - None Plasticity N - Nonplastic L - Low M - Medium H - High V -																																																																																																															
12.0 Note: Concrete protective slab over tunnel encountered at 4.6 ft. 12.0 4.6 BOTTOM OF EXPLORATION 4.6 FT Image: state sta	-+		+		 	·+	F	35	5;	65	_	-		_		- †-	10	., no	n.,	in.	5 in	.5 ir	.5 ii	.5 ii	.5 ii	5 ir	in	<u> </u>	<u>-</u> - ז.,	., r	n	no	10	0)		- +	+		_													_	_	-	•			_ 1	-	_	_	_	_				T	T										_	_	_	-	-	_		• •	• -	-	-	• -		• -	• -	• •	• •			-	-	_					ſ	ſ	ſ	ſ	ſ		ł
12.30 BOTTOM OF EXPLORATION 4.6 FT 4.6 BOTTOM OF EXPLORATION 4.6 FT 4.6 BOTTOM OF EXPLORATION 4.6 FT 1 Image: Comparison of the state of																				.	. F 1	- <i>C</i>	o fr	o ~	~ ~		6																																																																																				
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy Toughness N - Nonplastic L - Low N - Nonplastic L - Low Dry Strength N - None L - Low M - Medium H - High H - High Dry S - Slow N - None N - None N - Medium H - High H - High N - None N - None N - None N - Medium H - High N - None N - None N - None N - Medium H - High N - None N - N	_		+	_		+	_		+							+			-	rt.	o ft.	o ft.	b ft.	b ft.	o ft.	o ft.	rt.	[.																																																																													l	l	l	l	l		
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy Toughness N - Nonplastic L - Low N - Nonplastic L - Low Dry Strength N - None L - Low M - Medium H - High H - High Dry S - Slow N - None N - None N - Medium H - High H - High N - None N - None N - None N - Medium H - High N - None N - None N - None N - Medium H - High N - None N - N																																																																																																															
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor.																																																																																																															
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor.																																																																																																															
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy Toughness N - Nonplastic L - Low N - Nonplastic L - Low Dry Strength N - None L - Low M - Medium H - High H - High Dry S - Slow N - None N - None N - Medium H - High H - High N - None N - None N - None N - Medium H - High N - None N - None N - None N - Medium H - High N - None N - N																																																																																																															
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor.																																																																																																															
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy Toughness N - Nonplastic L - Low N - Nonplastic L - Low Dry Strength N - None L - Low M - Medium H - High H - High Dry S - Slow N - None N - None N - Medium H - High H - High N - None N - None N - None N - Medium H - High N - None N - None N - None N - Medium H - High N - None N - N																																																																																																															
pit backfilled in 6-in. lifts and compacted with a vibratory plate compactor. Dilatancy Toughness N - Nonplastic L - Low N - Nonplastic L - Low Dry Strength N - None L - Low M - Medium H - High H - High Dry S - Slow N - None N - None N - Medium H - High H - High N - None N - None N - None N - Medium H - High N - None N - None N - None N - Medium H - High N - None N - N		_																																																																		[[
Toughness L - Low M - Medium H - High Plasticity N - Nonplastic L - Low M - Medium H Dry Strength N - None L - Low M - Medium H - High V -				000	No		N			SI-																																					_	_	_	_	_	_	_	_	_	_	_					_				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	-	-	_	-	-	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
			h	ligh	Hig	1 - H	Н	n	ium	ediı	- M	M -	Ν	w	Low	- Lo	L -	L	N - N	N -	N	N	N	Ν	N	N	N	N -	-	- N		L	Ŀ	L-		- 1	- L	۰L	Lo	_0\	.0V	ow	ow	ow	w	w	v	v	v	v	v	v	N	w	w	w	bW	DM	٥v	.0\	.01	.0	_0	_0	Lo	Lo	Lo	L	L	Lo	Lo	Lo	Lc	Lc	Lc	_0	_0	_0	.0	.0	.0'	0	0\	٥V	٥V	٥V	w	w	w	w	w	w	w	w	w	٥V	٥V	0\	.0'	.0	_0	_0	Lo	L	L	L	L	L	L	L	L
						-										Lo	L - L	ne L	one	lon l	Nor	No	- No	- No	- No	No	lon	one	ne	e	L	L-		- L	- L	L	Lo	Lo	.OV					_	_		-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	ov	0\	.0\	.0	.0	0\	0\	0\	ov	ov	ov	VC	VC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	οv	SV	0\	01	.0	.0	.0	.0	.0	.0	_C
Diameter (in.) Number Approx. Vol. (cu.ft) 12 to 24 =	-			-												t L	Pit	F)	<u>ft)</u>	<u>.ft)</u>	. <u>ft)</u>	. <u>ft)</u>	<u>.ft)</u>	<u>ft)</u>)				I	Р	Pi	Pit	Pit	it	it I	t L	Le																										Le	L	L	L	L	L	L	L	L	L	L	Le	Le																								Le	L	L	L	L	L	L	L	L	L	: L

Proj	ect	SOUTH E	BOSTON	N INNOVATION	CAMPUS			Fil	e N	о.		13	275	53-0	006		
Loca	ition	CORNER	2 HAR	BOR ST/329 NC	ORTHERN AVE, BOS	STON, MA		ня	kA F	Ren		S	. Sh	nav			
Clier	nt	ICCNE LI	_C							ισp					~		
				T CO., INC.				Da	te			24、					
Equi	pment Us	ed Ca	terpillar	M320 Excavato	r				eath			Low		s F,	ра	rtly	clo
	atum: BC			Location: Se	e Plan	Ground	lwater depths/ent	ry rate	s (ir	ı./m	in.):	: [)ry				
(ft)		Stratum			SUAL-MANUAL IDENTIFIC	CATION AND	D DESCRIPTION			avel		Sand		_		ا م	est
Depth (Sample ID	Change Elev./ Depth (ft)	USCS Symbo		OUP NAME & SYMBOL, structure, odor, moistur GEOLOGIC INT	re, optional c	lescriptions	æ,	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -					-ASPI	HALT-											
		15.6 0.4	SP	Yellow brown structure, no	n poorly graded SAND odor, dry	(SP), no ov	versized, mps 2 in.,	no				65	35				
1 -					-FI	LL-											
I		14.7 1.2	SP		o black silty SAND (SF no odor, moist, trace b -FI			9 in.,	5	5	10	35	30	15			
		14.0			-11												
2 -		1.9	GP		graded GRAVEL with s ure, no odor, moist, hig			<u>s 3</u>									
				Note: 24 in. encountered	x 12 in. concrete duct t at 2.5 ft.	bank locate	ed at northeast end	of pit	20	40	20	10	10				
3 -					-FI	LL-											
4 -	-	11.6		Note: 1.5-in.	pipe perpendicular to	concrete c	onduit at 4.3 ft.										
		4.3		-+							╞┟		-+	-+			
5 -			SP	Tan poorly gr Sand collapsi	raded SAND (SP), sing ing. Limited area to dig	gle-grain sti g due to co	ructure, no odor, di oncrete duct bank.	у.				15	85				
6 -	-	9.9 6.0			BOTTOM OF EXP	LORATIO	N 6.0 FT			-	$\left \cdot \right $		+	+			
					to advance test pit de r remnant support of e												
Dbstru	uctions: Co	ncrete due	ct Re		surface elevation by Fe			Fie	eld T	ests							_
	at 2.5 ft.		pit	backfilled in 6-in. li ratory plate compa	ifts and compacted with actor.	a	Dilatancy Toughness Plasticity N Dry Strength N - No	L - I - Nonpl		M L-	- Me Low	ediun v M	n - Me	H - F diun	High n H	- Hi	•
	Standing	Water in (Complet	ted Pit		Boulders						Dim		-			
ato	depth	Dry		ft	Diameter (in.) Nu 12 to 24	<u>Imber</u> <u>A</u> =	pprox. Vol. (cu.ft)	Pit	Len	ath	×М	Vidth	h (ft) 6	.2 x	10	ft

HA	LEY LDRICH			TE	ST PIT LOG		Т	est	t P	it N	0.	H	419)-T	P7	
Proje	ect S	OUTH E	BOSTON	INNOVATION	CAMPUS		File	e No) .		1327	753-	006			
Loca				OR ST/329 NC	ORTHERN AVE, BOST	on, Ma	Н8	AR	Rep		S. S	Shay	,			
Clien	-		-				Da	to	-	24 J	ıl 20	19				
	ractor J pment Used			CO., INC. 1320 Excavato	r					Jppe			mod	stlvzz	مامر	idu
	nd El.: 16.2			Location: Se		Groundwater depths/entr	_		-				mos	suy o		luy
	atum: BCB											, 				
(ft)		Stratum Change			SUAL-MANUAL IDENTIFICA			Gra		Sa vg				ld T S		
Depth (ft)	Sample ID	Elev./ Depth (ft)	Symbol	(Color GR	OUP NAME & SYMBOL, % structure, odor, moisture GEOLOGIC INTE	oversized, maximum particle size , optional descriptions RPRETATION)	3	% Coarse	% Fine	% Coarse	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -					-ASPH/	ALT-									_	
		15.9 0.4	SP	Yellow brown no structure,	n poorly graded SAND (S no odor, dry	SP), no oversized, mps 0.25 ir	۱.,			6	5 35					
					-FILI	L-										
- 1 -		14.9														
		1.3	SP		boorly graded SAND with cture, no odor, moist, tra -FILI		mps	5	5	15 4	0 25	10				
- 2 -		14.3 1.9	 GP	Gray poorly o	graded GRAVEL with sa	nd (GP), mps 3 in., no structu	<u>-</u>			\vdash	+-	-		-+		
2			01	no odor, mois	st, highly compacted der	nse grade material, trace cond	crete									
- 3 -					-FILI	L-										
		12.9 3.3		Note: Concre	ete rubble with trace reb	ar encountered at 3.3 ft.				\vdash	+-	+-		-+		
- 4 -																
					-FILI											
- 5 -					-F1L	<u>L</u> -										
		10.7 5.5			BOTTOM OF EXPL	ORATION 5.5 FT				$\left \right $		-				\vdash
				Note: Due to depth to top of		advance deeper to determine	•									
Obstru	ictions:		Rem	arks: Ground	surface elevation by Feld	lman;	Fie	eld T	ests	 ;		1				<u> </u>
			·	ackfilled in 6-in. I tory plate compa	lifts and compacted with a actor.	Dilatancy Toughness Plasticity N ·	L - L Nonpla	_ow astic	M· L-		ium M - N	H - Iediu	mr̃⊦	I - Hi		
	Standing W	later in (d Pit	B(Dry Strength N - Non	e L-Lo			ediun Pit D					High	1
	lepth	Dry	f		Diameter (in.) Nun 12 to 24		Pit I			x Wi					ft	
me	asured after NO	0.5 TE: Soil		ours elapsed on based on vis	over 24	= ne USCS system as practiced b		Dep v & A			nc.	5.5				

HA TESTPIT-09 HA-LIB09-BOS.GLB HA-TP07-1.GDT G:\132753 - 2 HARBOR STREET\GINT\132753-006 TP.GPJ Aug 15, 19

Δ	LEY LDRICI				ST PIT LOG											
Proje		SOUTH E	OSTON	INNOVATION	CAMPUS			File	e N	0.		13	2753	-006	5	
Loca				OR ST/329 NC	ORTHERN AVE, BOS	STON, M	1A	H8	kA F	Rep		S.	Sha	y		
Clien	-	ICCNE LL						Da	to		2	5 Ju	l 20 [.]	19		
				CO., INC.	_										41	
Equi	pment Us	ed Ca	terpillar iv	/I320 Excavato	ſ			We						, par	tiy c	;IOL
	nd El.: 16.6	-		Location: Se	e Plan	Grou	ndwater depths/enti	y rates	s (ir	1./m	in.)	: D	ry			
El. Da	atum: _{BC}	B														_
(H)		Stratum Change	USCS	VIS	SUAL-MANUAL IDENTIFI	CATION A	ND DESCRIPTION			avel		<u>Sand</u> ह्	-		eld T	
Depth (ft)	Sample ID	Depth	Symbol	(Color GR	OUP NAME & SYMBOL, structure, odor, moistu GEOLOGIC IN	ure, optiona		e,	% Coarse	Fine	Coarse	% Medium	Fines	Dilatancy	Toughness	Plasticity
0 -		(ft)				PHALT-			%	%	%	% ;	× ×		<u>₽</u>	
		16.2 0.4	SP	Yellow brown			oversized, mps 2 in.,	no		-		65 3	35		-	
		0.7	0	structure, no	odor, dry	ILL-	,po z ill.,									
1 -		15.0														
		15.3 1.3	SP		oorly graded SAND w structure, no odor, m		P), 10 to 12% oversiz	ed,	5	5	15	40 2	25 10			
						illL-	טווטה, נומטס ומטווט									
2 -		14.5 2.1	GP), 10% oversized, mp	s 3	20	40	20	10 1	0			-
				in., no structu material	ıre, no odor, moist, hiç	jhly com	pacted dense grade									
3 -																
Ŭ					-F	ILL-										
4 -																
		11.7														
5 -		4.9	SP	Yellow brown structure, no		(SP), no	oversized, mps 1.8 in	., no								
					-F	ILL-						60 4	ŀO			
6 -				-	ete protective slab ove	ər tunnel	encountered at 6.0 to	6.5								
		10.1 6.5		ft.	BOTTOM OF EXF						$\left \right $		+			-
				Note: Top of pit.	tunnel appears to slo	pe down	ard toward northern er	nd of								
)bstru	ictions:	_	-		surface elevation by Fe				eld T			<u>-</u>		•		
			·	tory plate compa	•		Dilatancy Toughness	L - I	Low	Μ	- Me	edium	н	- Non - Higł	۱	
							Dry Strength N - Nor	- Nonpla ne L-Lo								
	Standing	Water in (Complete	d Pit		Boulder umber	<u>s</u> Approx. Vol. (cu.ft)							ons		_
at d	lepth	Dry	f	ť	12 to 24		=	Pit	Len	gth	хW	Vidth	(ft)	9.5	x 9.	5 fl

ſ	Н		LEY LDRICH			TES	ST PIT LOG			Те	st	Pit	N	0.	HA	419	9-TI	P9
	Pro	oje	ect S	OUTH E	BOSTON	INNOVATION	CAMPUS			File	No.			327	753-	006		
		-		ORNER	2 HARB	OR ST/329 NO	RTHERN AVE, BOS	ΓON, Ν	1A	H&A	Pa	an		S. S	shav	,		
	Cli	en	it IC	CCNE LL	C							۶þ						
	-					CO., INC.				Date				5 Ju				
	Eq	ui	pment Use	d Ca	terpillar N	/320 Excavator	-			Wea	_			,	·	ly cl	loud	у
			nd El.: 15.9 atum: _{BCB}			Location: Se	e Plan	Grou	ndwater depths/entry	rates	in./	/min	.):	Dry	/			
	(H)	2		Stratum		VIS	UAL-MANUAL IDENTIFIC	ATION A	ND DESCRIPTION		irav		Sar			Fie	eld T	ests
	Depth (Sample ID	Change Elev./ Depth (ft)	USCS Symbol	(Color GR	OUP NAME & SYMBOL, % structure, odor, moisture GEOLOGIC INTE	e, optiona				% Fine	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity Strenath
F	0	-					-ASPH	ALT-		c					<u>`</u>		F	
				15.5 0.4	SP		poorly graded SAND (structure, no odor, dry	SP), no	oversized, mps 2 in., no)			65	5 35				
F	1	_		14.7 1.2	<u>-</u> - SP	Dark brown p mps 9 in., no sheet metal	oorly graded SAND wit structure, no odor, moi	h silt (S st, trace	P), 8 to 10% oversized, e brick, trace wood, trace	: e	5	5 1	540	25	10			-+
-	2	-		14.0 1.9		in., no structu material Note: Pocket	re, no odor, moist, high	ly com	?), 10% oversized, mps 3 pacted dense grade h re-bar observed in eas			- +-						-+-
_	4	_				Note: Expose ft.	ed 24-in. diameter conc	rete dra	ain pipe. Top/crown at 3	.8 2	0 4	40 2	0 10	0 10				
-	5	_				Note: 4-in.m	edium fine sand layer c	on conc	rete.									
-	6	_					excavated a 1 x 5 ft sec nel at 6.5 to 6.9 ft.	tion of _l	pit. Concrete protective									
_				9.0 6.9		Note: Top of tunnel.	BOTTOM OF EXPL tunnel appears to slope		ON 6.9 FT ward toward eastern end	d of								
		tr	uctions:		Par	arke: Ground	surface elevation by Fel		1	Field		ste			1			
	מע	(r u	ictions:		pit ba		surface elevation by Felo fts and compacted with a ctor.		Dilatancy Toughness Plasticity N - N Dry Strength N - None	R - R L - Lo Nonplas	apid w ic l	H S M-M L-Lo	/ledi w	um M - N	H - Iediu	High Im F	ı H - Hi	
			Standing V	later in 0	Complete	ed Pit		oulder nber	<u>s</u> Approx. Vol. (cu.ft)			st Pi						
			lepth asured after	Dry 0.5		ft hours elapsed	12 to 24 over 24		=	Pit Le	-			ith (ft) 6 6.9		10 ،	ft
				TE: Soil	identificat	ion based on visu		he USC	S system as practiced by		· · ·			c.				

Photo 1: View looking west at HA19-TP1

Photo 3: Hand excavated to top of tunnel protective slab at depth of 4.4 ft below existing site grades at HA19-TP1

Photo 2: Dense graded fill encountered at depth of approx. 2 ft below existing site grades at HA19-TP1

Photo 4: Backfilled/compacted test pit at HA19-TP1

Photo 5: Saw cutting asphalt at HA19-TP2

Photo 6: Clay (hydraulic fill) material encountered at depth of approx. 5 ft below existing site grades at HA19-TP2

Photo 7: Backfilling/compacting within HA19-TP2

Photo 8: Asphalt patch at HA19-TP2 and HA19-TP3

Photo 9: View looking west at HA19-TP3 excavation

Photo 10: Installing trench box for temporary excavation support at HA19-TP3

Photo 11: Hand excavated at HA19-TP3 to top of tunnel protective slab at depth of 7.9 ft below existing site grades

Photo 12: Backfilling/compacting within completed HA19-TP3 test pit

Photo 13: View looking south at HA19-TP4

Photo 14: Looking into HA19-TP4 excavation; hand excavated to top of tunnel protective slab at depth of 4.8 ft below existing site grades

Photo 15: Backfilling/compacting within completed HA19-TP4 test pit

Photo 16: Completed/backfilled test pit at HA19-TP4

Photo 17: View looking south towards HA19-TP5

Photo 18: Hand excavation to expose top of tunnel at HA19-TP5

Photo 19: Top of tunnel protective slab encountered depth of 4.6 ft below existing site grades at HA19-TP5

Photo 20: View of excavated material generated from HA19-TP5 excavation

Photo 21: Looking west at the location of HA19-TP6 and HA19-TP7

Photo 22: View looking into HA19-TP6; concrete duct bank exposed at northeast end of test pit

Photo 23: Completed/backfilled test pit at HA19-TP6

Photo 24: View looking south at location of HA19-TP7

Photo 26: View looking into HA19-TP7 excavation

Photo 25: Dense graded material and concrete rubble/debris encountered at depth of approx. 1.9 ft below existing grades at HA19-TP7

Photo 27: View of excavated material generated from HA19-TP7 excavation

Photo 28: View looking east at HA19-TP8 excavation

Photo 28: Excavating at HA19-TP8, located near the center of the I-90 CA/T tunnel alignment

Photo 30: Trench box installed for temporary excavation support at HA19-TP8

Photo 31: Hand excavated to top of tunnel protective slab at depth of 6.0 to 6.5 ft below existing site grades at HA19-TP8

Photo 32: View looking east at HA19-TP9 excavation

Photo 33: Typical cross-section of fill material placed over CA/T tunnel alignment at HA19-TP9

Photos 34 and 35: Hand excavated to top of tunnel protective slab at depth of 6.5 to 6.9 ft below existing site grades at HA19-TP9

APPENDIX G

Stormwater Management Systems

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

15 April 2021 File No. 0200427-000

BCP-CG Harbor Property LLC c/o Beacon Capital Partners 200 State Street, 5th Floor Boston, Massachusetts 02109

Attention: Mr. Eric Ewer Senior Vice President

Subject: Stormwater Storage and Infiltration Systems 2 Harbor Street/ 329 Northern Avenue Boston, Massachusetts

Ladies and Gentlemen:

This letter summarizes analyses conducted by Haley & Aldrich to evaluate the effectiveness (i.e., mounding potential) for the subject project's stormwater storage and infiltration systems as it relates to complying with the Boston Water and Sewer Commission (BWSC) requirement to retain and infiltrate the 1.25-inch design storm volume for the impervious portion of the property (and the Leadership in Energy and Environmental Design (LEED) goal to retain and infiltrate the 1.15-inch design storm volume for the subsurface within 72-hours in advance of overflow discharge to the local storm drain system servicing the project site.

Systems Description

Based on information provided to us by the project's Civil Engineer (Nitsch Engineering), the analyses described herein are based on a total stormwater runoff volume of 18,800 cubic feet (cf)/ 140,000 gallons that can be infiltrated from two separate systems identified as System 1 and System 2 (further subdivided as 2A and 2B) and as shown on the attached Drawing C-300 titled Site Utility Plan, prepared by Nitsch Engineering and dated 16 April 2021.

We understand that the System 1 design volume (14,500 cf/ 108,000 gallons) will be held within a tank positioned inside the building's one-level below grade parking structure, from which it will be pumped to an approximately 358 ft-long drainage gallery as generally shown in plan view on the attached Drawing C-300 and with cross-sectional details as shown on the attached Drawing C-500 titled Details I, prepared by Nitsch Engineering and dated 16 April 2021.

We also understand that the System 2 design volume (4,300 cf/ 32,000 gallons) will be collected from a network of area drains positioned throughout the project's planned greenscape/ hardscape improvements located to the north of the new building. Surface runoff from the area drains will be piped to two separate (2A and 2B) but connected storage/infiltration systems comprised of open-bottomed storm water storage chambers encapsulated by drainage stone as generally shown in plan

2 Harbor Street/ 329 Northern Avenue 15 April 2021 Page 2

view on Drawing C-300; cross-sectional details of the drainage gallery are provided on the attached Drawing C-501 titled Details II, prepared by Nitsch Engineering and dated 16 April 2021.

Systems 1 and 2 (2A and 2B) are designed to facilitate infiltration of water into the miscellaneous fill soils anticipated to underlie the project site to a depth of about 20 ft below planned final site grades.

System Performance - Mounding Potential

Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a limited area can cause groundwater mounding that can affect/alter existing groundwater conditions resulting in unintended impacts to surface and subsurface structures and conditions. Following is a summary of results obtained from calculating groundwater mounding potential for Systems 1 and 2 (2A and 2B) using a widely known and accepted (although simplified) analytical method based on work by Hantush (1967).

The estimated mounding potential after 72-hours of infiltration directly below System 1 is 3.1 ft above static groundwater level, or El. 11.1 Boston City Base (BCB) assuming a season high groundwater elevation of El. 8 BCB. Estimated mounding potential for System 2A is 2.0 ft, or El. 10.0 BCB and for System 2B is 1.6 ft, or El. 9.6 BCB.

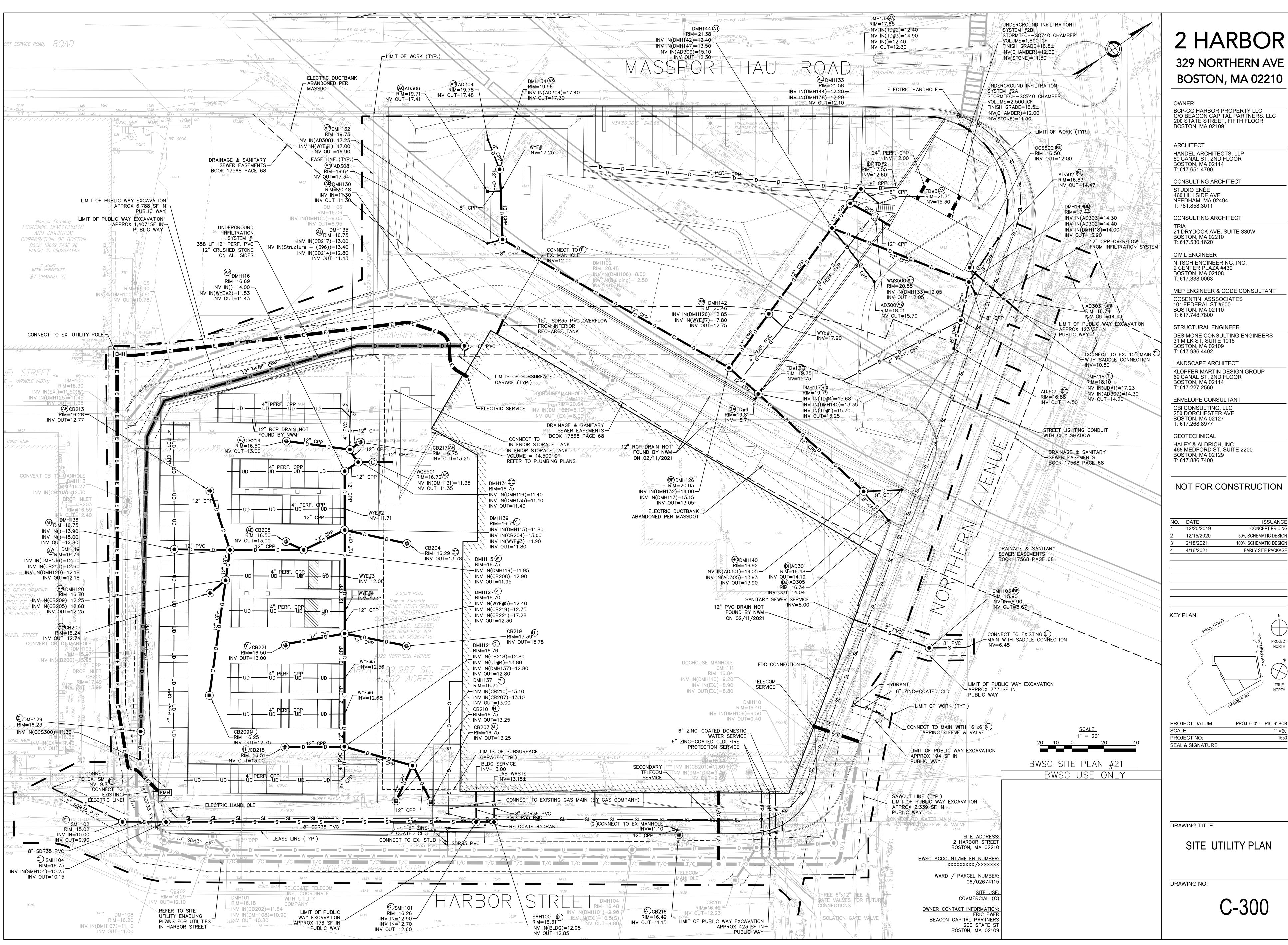
For all three cases, the mound height is for a short period of time and dissipates within a relatively small radial or lateral distance from the footprint of each infiltration system. A detailed summary of the analytical solution results is included in the attached Appendix A.

Closing

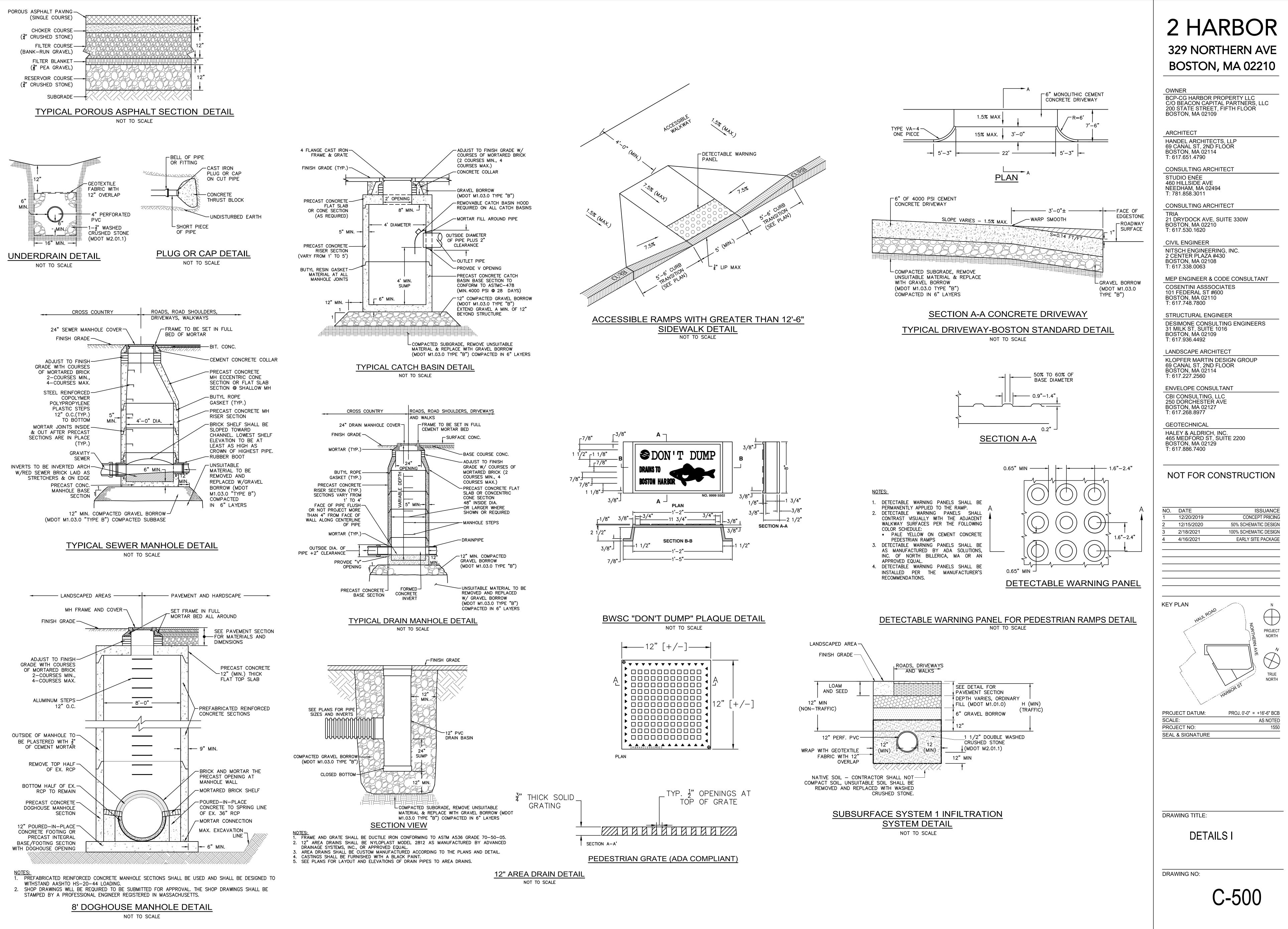
We trust that the above information meets your needs. If you have questions or wish to discuss the recommendations provided, do not hesitate to contact us.

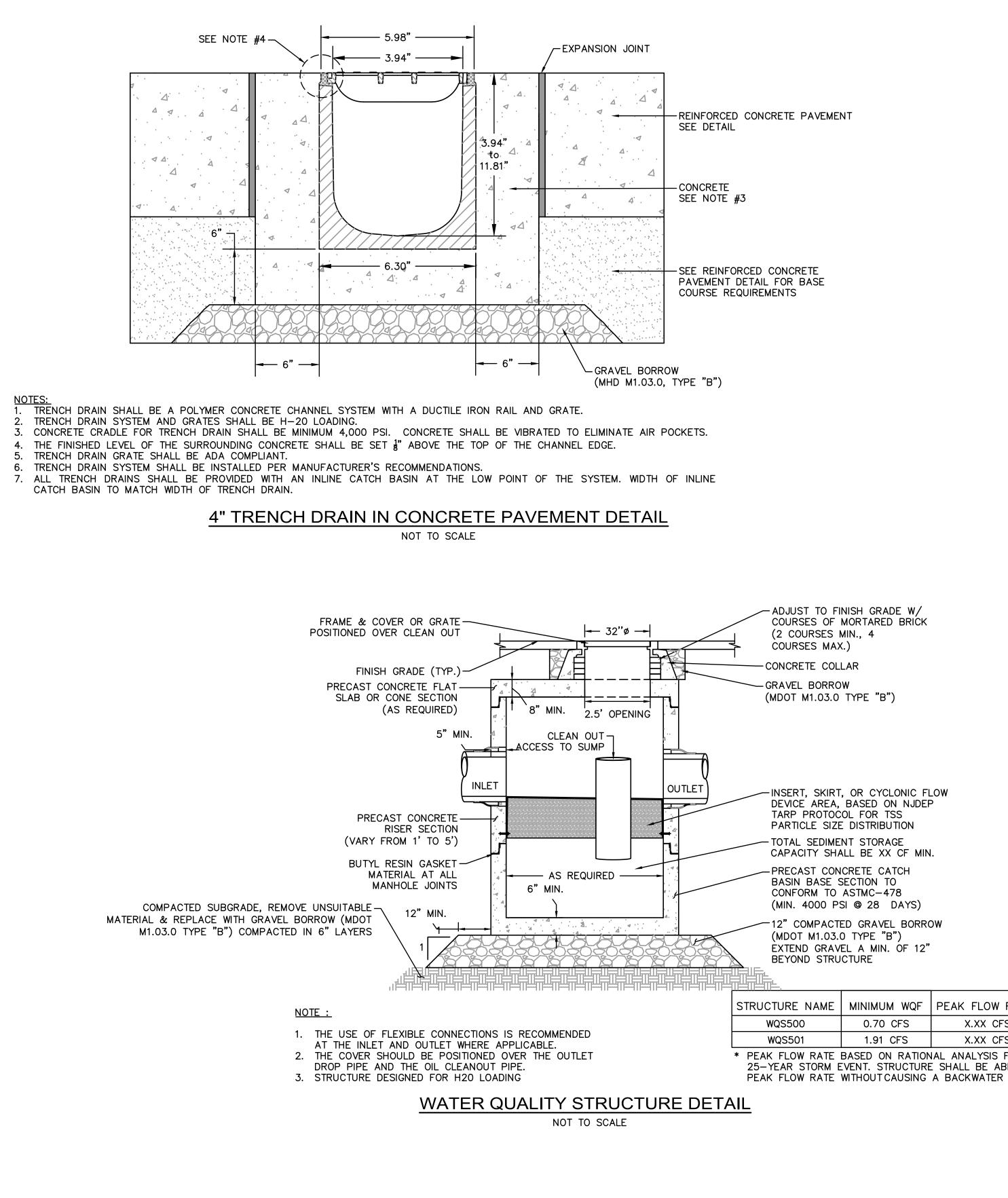
Sincerely yours, HALEY & ALDRICH, INC.

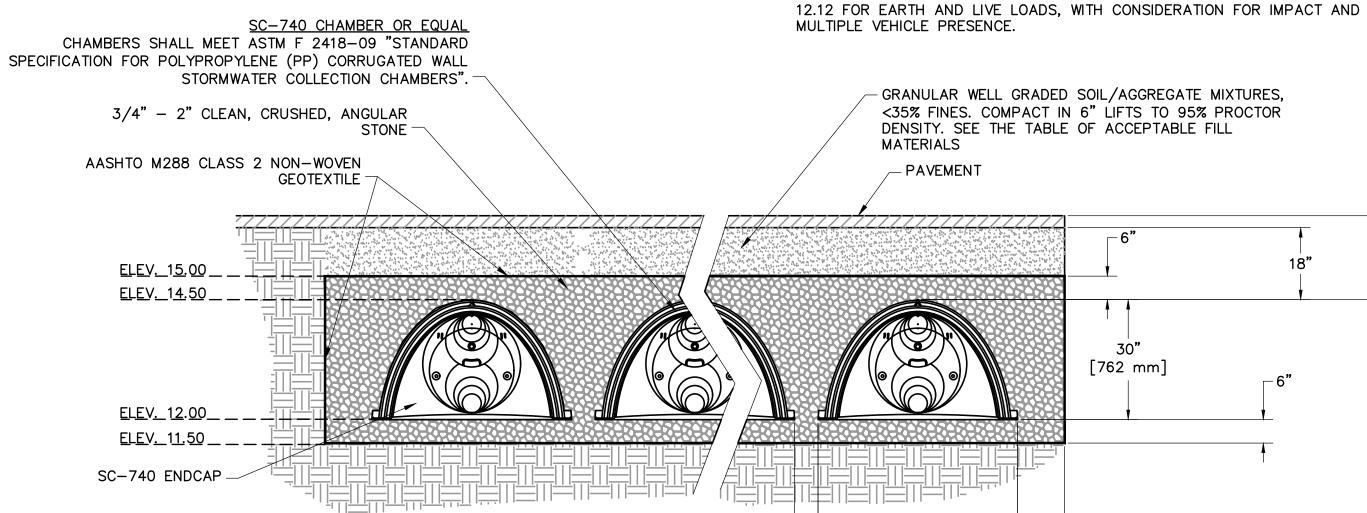
Michael Atwood, P.E. Principal


Attachments

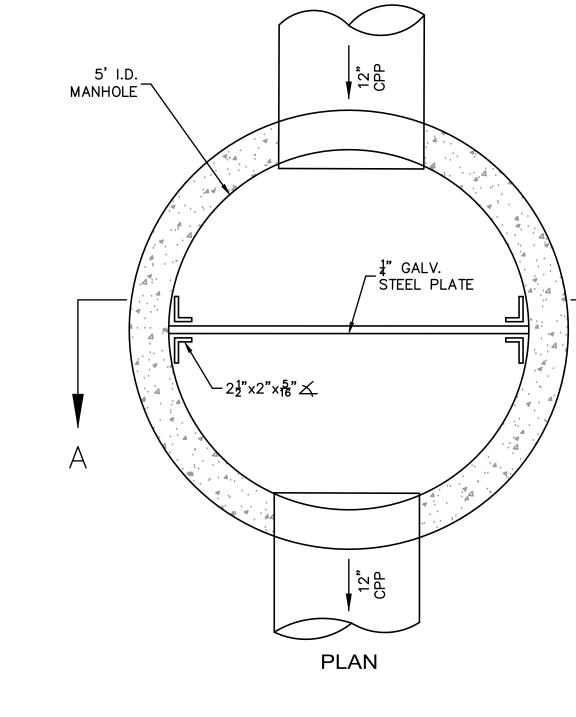
- Drawing C-300 titled Site Utility Plan, prepared by Nitsch Engineering, dated 16 April 2021
- Drawing C-500 titled Details I, prepared by Nitsch Engineering, dated 18 February 2021
- Drawing C-501 titled Details II, prepared by Nitsch Engineering, dated 18 February 2021
- Appendix A Calculations


C: Nitsch Engineering; Attn: Brittney Veeck, Chris Hodney

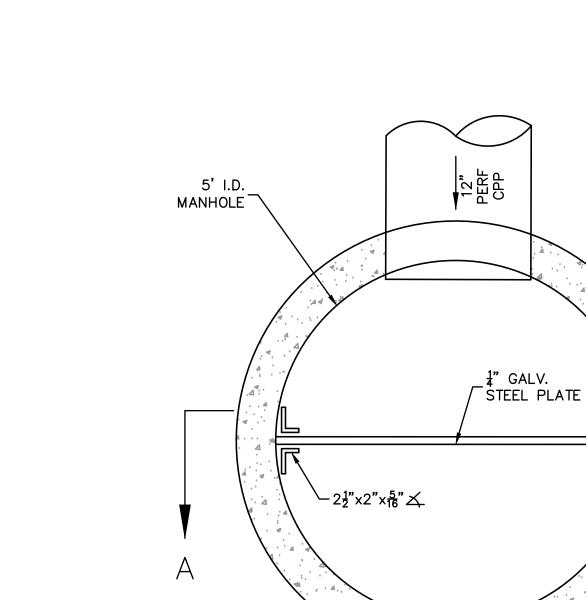

\\haleyaldrich.com\share\CF\Projects\0200427\Stormwater Management\Recharge Memo\2021-0415-2 Harbor-HAI-Storage-Infiltration-Letter-D2.docx



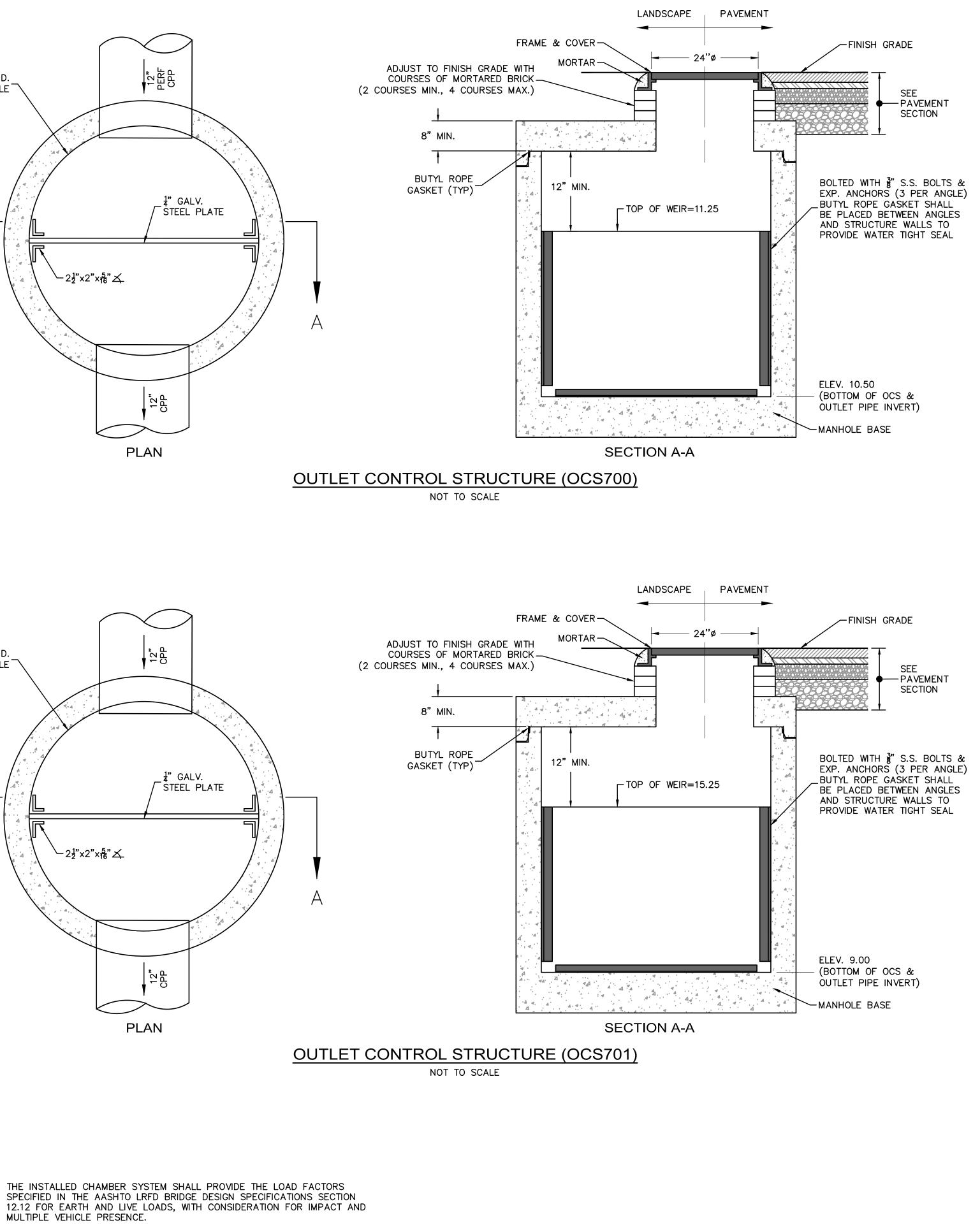
BOSTON, MA 02210
OWNER BCP-CG HARBOR PROPERTY LLC C/O BEACON CAPITAL PARTNERS, LLC 200 STATE STREET, FIFTH FLOOR BOSTON, MA 02109
ARCHITECT HANDEL ARCHITECTS, LLP 39 CANAL ST, 2ND FLOOR 30STON, MA 02114 F: 617.651.4790
CONSULTING ARCHITECT STUDIO ENÉE 460 HILLSIDE AVE NEEDHAM, MA 02494 T: 781.858.3011
CONSULTING ARCHITECT TRIA 21 DRYDOCK AVE, SUITE 330W 30STON, MA 02210 T: 617.530.1620
CIVIL ENGINEER NITSCH ENGINEERING, INC. 2 CENTER PLAZA #430 3OSTON, MA 02108 F: 617.338.0063
MEP ENGINEER & CODE CONSULTANT COSENTINI ASSSOCIATES 01 FEDERAL ST #600 BOSTON, MA 02110 F: 617.748.7800
STRUCTURAL ENGINEER DESIMONE CONSULTING ENGINEERS 31 MILK ST, SUITE 1016 30STON, MA 02109 F: 617.936.4492
ANDSCAPE ARCHITECT (LOPFER MARTIN DESIGN GROUP 39 CANAL ST, 2ND FLOOR 30STON, MA 02114 1: 617.227.2560
ENVELOPE CONSULTANT CBI CONSULTING, LLC 250 DORCHESTER AVE 30STON, MA 02127 F: 617.268.8977
GEOTECHNICAL HALEY & ALDRICH, INC. 465 MEDFORD ST, SUITE 2200 3OSTON, MA 02129 F: 617.886.7400
NOT FOR CONSTRUCTION
D. DATE ISSUANCE 12/20/2019 CONCEPT PRICING
12/20/2019 CONCEPT PRICING 12/15/2020 50% SCHEMATIC DESIGN 2/18/2021 100% SCHEMATIC DESIGN 4/16/2021 EARLY SITE PACKAGE
HAUL ROAD
HAU-
TRUE NORTH
HARBORST
ROJECT DATUM: PROJ. 0'-0" = +16'-6" BCB CALE: 1" = 20'
CALE: 1" = 20" ROJECT NO: 1550 EAL & SIGNATURE
SITE UTILITY PLAN
RAWING NO:
C-300



BEYOND STRU	CTURE		
UCTURE NAME	MINIMUM WQF	PEAK FLOW RATE*	MINIMUM SEDIMENT STORAGE CAPACITY
WQS500	0.70 CFS	X.XX CFS	12 CF
WQS501	1.91 CFS	X.XX CFS	33 CF
		IAL ANALYSIS FOR A	PASS


RUCTURE NAME	MINIMUM WQF	PEAK FLOW RATE*	MINIMUM SEDIMI STORAGE CAPA
WQS500	0.70 CFS	X.XX CFS	12 CF
WQS501	1.91 CFS	X.XX CFS	33 CF
PEAK FLOW RATE	BASED ON RATION	IAL ANALYSIS FOR A	

25-YEAR STORM EVENT. STRUCTURE SHALL BE ABLE TO PASS PEAK FLOW RATE WITHOUT CAUSING A BACKWATER CONDITION.


12" CPP

PLAN

SUBSURFACE SYSTEM 2A AND 2B INFILTRATION SYSTEM DETAIL

NOT TO SCALE

Appendix A Calculations

НЛ	CALCULATIONS	0200427-000
AL	DRICH	1 of 4
lient:	BCP-CG Harbor Property LLC	15-Apr-21
Project:	2 Harbor Street/ 329 Northern Avenue	SHL
Subject:	Stormwater Storage and Infiltration Systems	MDK
	PROBLEM STATEMENT & OBJECTIVE	
	To evaluate the following related to the proposed stormwater infiltration at the Subject property:	
	a) Evaluate the mounding potential for the subject project's stormwater storage and in	filtration systems
	as it relates to complying with the requirement to retain and infiltrate the design sto	orm volume within 72-hours
	b) Three total systems are evaluated in this analysis: System 1 (14,500 CF), System 2A (2,500 CF), and
	System 2B (1,800 CF) for a total volume of 18,800 CF.	
	REFERENCES	
	1. Massachusetts Stormwater Guidance.	
	2. Discroll (1986), Groundwater and Wells.	
	3. Hantush, M.S., 1967, Growth and decay of groundwater mounds in response to uniform percolatio	n: Water
	Resources Research, v. 3, p. 227–234.	
	ASSUMPTIONS	
	1. Ground surface elevation is El. 16.0 BCB (Boston City Base)	
	2. Seasonal high groundwater elevation is El. 8.0 BCB	
	3. Fill thickness is 20 feet below ground surface. The fill is predominately SAND.	
	4. The Rawl's Rate for SAND (8.3 inches/hour) is used in the mounding analysis with a 1/2 factor of sa	fety applied for an
	estimated hydraulic conducitivity of 4.1 inches/hour or 8.2 feet/day	
	SYSTEM 1:	
	1. The proposed infiltration volume for System 1 is 14,500 CF over a period of 72-hours.	
	2. For this analysis, System 1 is assumed to consist of a 358' x 10' linear drainage gallery.	
	3. Estimated maximum groundwater mounding for System 1 after 72-hours is 3.1 feet above static wa	ater level, or El. 11.1 BCB
	4. The Hantush (1967) solution result for System 1 is located on Page 2.	
	SYSTEM 2A:	
	1. The proposed infiltration volume for System 2A is 2,500 CF over a period of 72-hours.	
	2. For this analysis, System 2A is assumed to consist of a 54' x 26' open-bottomed infiltration system.	
	3. Estimated maximum groundwater mounding for System 2A after 72-hours is 2.0 feet above static v	water level, or El. 10.0 BCB
	4. The Hantush (1967) solution result for System 2A is located on Page 3 .	
	SYSTEM 2B:	
	1. The proposed infiltration volume for System 2B is 1,800 CF over a period of 72-hours.	
	2. For this analysis, System 2A is assumed to consist of a 40' x 26' open-bottomed infiltration system.	
	3. Estimated maximum groundwater mounding for System 2B after 72-hours is 1.6 feet above static v	water level, or El. 9.6 BCB
	A The Hantuch (1967) solution result for System 2A is located on Page 4	

4. The Hantush (1967) solution result for System 2A is located on Page 4.

\\haleyaldrich.com\share\CF\Projects\0200427\Stormwater Management\Calculations\[2021-0415-HAI-2 Harbor St Calculation Package F_mk.xlsx]

		CALCULATIONS		0200427-000
	DRICH	CALCOLATIONS		2 of 4
ient:	BCP-CG Harbor	Property LLC		15-Apr-21
roject:	2 Harbor Stree	t/ 329 Northern Avenue		SHL
ubject:	Stormwater Sto	orage and Infiltration Systems: System 1		MDK
This spreadshe Scientific Invest The user must thickness of th rectangular ba wants the valu distances from Cells highlighti "Re-Calculate	eet will calculate the he stigations Report 2010 specify infiltration ratio as saturated zone (hi(0) isin, if the user wants the as perpendicular to the as perpendicular to the set in yellow are values New button cach time will be incorrect. Use of R Sy K Sy K X y t hi(0) h(max) Distance from center of basin	57) SOLUTION RESULTS hight of a groundwater mound beneath a stormwater infiltration basis 5102 "Simulation of groundwater mounding beneath hypothetical sto (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basis of he water table changes perpendicular to the long side, specify x as the short side, specify v as the short dimension, x as the long dimension in at which water-table aquifer thickness are calculated. that can be changed by the user. Cells highlighted in red are output we can be changed by the user. Cells highlighted in red are output we can be changed by the user. Cells highlighted in red are output we can be changed by the user. Cells highlighted in red are output we can be changed by the user. Cells highlighted in red are output we can be changed by the user. Cells highlighted in red are output we can be changed by the user. Cells highlighted in red are output we can be changed by the user. Cells highlighted in red are output we consistent units for all input values (for example, feet and days) use consistent units (e.g. feet & days or inches & hours) Recharge (infiltration) rate (feet/day) Specific yield, Sy (dimensionless, between 0 and 1) Horizontal hydraulic conductivity, Kh (feet/day)* 1/2 length of basin (x direction, in feet) 1/2 width of basin (y direction, in feet) 1/2 width of basin (y direction, in feet) initial thickness of saturated zone (beneath center maximum groundwater mounding (beneath center of in the second se	ormwater infiltration basins". Simensions (x, y), duration of For a square basin the half we short dimension and y as the All distances are from the c ratues based on user-specifiese erations to converge on the c Conversion Table inch/hour feet/d 0.67 2.00 hours days 36 of basin at end of infiltrat	infiltration period (t), and the initial noth equals the half length (x = y). For a e long dimension. Conversely, if the user enter of the basin. Users can change the dinputs. The user MUST click the bloc orrect solution will not be done and ay 1.33 4.90 In the report accompanying this speciadsheet (USGS SIR 2010 S102), vertical soil permeability (ft/d) is assumed to be one-tenth herizontal 1.50 hydraule conductivity (ft/d).
	feet	Dis Columbus Mana		
feet	feet 0 20 40	Re-Calculate Now	unding in fact	
feet 3.009 3.019 3.019	feet 20 40 50 60	Re-Calculate Now Groundwater Mo	ounding, in feet	
feet 3.079 4.017 3.009 4.080 8.080	feet 20 40 50 60 70 80	Groundwater Me	ounding, in feet	
Feat 2 (07) 2 (0	feet 0 20 40 50 60 70 80 90 100	Groundwater Mo	ounding, in feet	
Feet 2 (5) (6) 2 (6) (6) 3 (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	feet 0 20 40 50 60 70 80 90	3.100 3.050 3.000	ounding, in feet	
Feet 2 (1993) 3 (1993) 3 (1994) 4 (1994) 3 (1994) 3 (1994) 3 (1994) 3 (1994) 3 (1994) 3 (1994) 3 (1994) 3 (1994) 3 (1994)	feet 0 20 40 50 60 70 80 90 100	Groundwater Mo 3.050 3.000, 2.950	ounding, in feet	
Feet 2 (5) (6) 2 (6) (6) 3 (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	feet 0 20 40 50 60 70 80 90 100	Groundwater Me 3.100 3.050 3.000 2.900	ounding, in feet	
1.00 S A.000 1.000 3.000 3.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000	feet 0 20 40 50 60 70 80 90 100	Groundwater Mo 3.050 3.000, 2.950	ounding, in feet	

Project: 2 Har Subject: Storn SYSTEM 2A HAI This spreadsheet will ca scientific investigations The user must specify in thickness of the saturate rectangular basin, if the wants the values perger distances from the cent Cells highlighted in yello	NTUSH (1967) alculate the height of Report 2010-5102 infiltration rate (R), ded zone (hi(0), height user wants the wa ndicular to the shor	19 Northern Avenue e and Infiltration System SOLUTION RESULTS of a groundwater mound there "Simulation of groundwater in specific yield (Sy), horizontal h the of the water table of the bo	ath a stormy rounding be	m 2A water infiltrat					U.S. Geologi	3 of 4 15-Apr- SHL MDK	21
roject: 2 Har ubject: Storn SYSTEM 2A HAI This spreadsheet will ca scientific investigations the user must specify in thickness of the saturate rectangular basin, if the wants the values perger distances from the cents Cells highlighted in yellic	rbor Street/ 32 mwater Storage NTUSH (1967) alculate the height of Report 2010-5102 mfiltration rate (R), ed zone (hi(0), height user wants the wa ndicular to the shor	19 Northern Avenue e and Infiltration System SOLUTION RESULTS of a groundwater mound there "Simulation of groundwater in specific yield (Sy), horizontal h the of the water table of the bo	ath a stormy rounding be	vater infiltrat					U.S. Geologi	SHL	
SYSTEM 2A HAI SYSTEM 2A HAI This spreadsheet will ca actentific investigations the user must specify in frickness of the saturate extangular basin, if the wants the values perger listances from the cent cells highlighted in yello	NTUSH (1967) alculate the height of Report 2010-5102 infiltration rate (R), ded zone (hi(0), height user wants the wa ndicular to the shor	e and Infiltration Syster SOLUTION RESULTS of a groundwater mound bene "Simulation of groundwater n specific yield (Sy), horizontal h th of the water table of the bo	ath a stormy rounding be	vater infiltrat					U.S. Geologi	MDK	
SYSTEM 2A HAI This spreadsheet will ca scientific investigations the user must specify in thickness of the saturature thickness of the saturature thickness from the cent cells highlighted in yello	NTUSH (1967) alculate the height of Report 2010-5102 nfilltration rate (R), a ed zone (hi(0), heig suser wants the wa ndicular to the shor	SOLUTION RESULTS of a groundwater mound bene "Simulation of groundwater m specific yield (Sy), horizontal h th of the water table of the bo	ath a stormy rounding be	vater infiltrat					U.S. Geologi		
This spreadsheet will ca Scientific investigations (he user must specify in thickness of the saturate rectangular basin, if the wants the values perger distances from the cents Cells highlighted in yello	Iculate the height o Report 2010-5102 nfiltration rate (R), red zone (hi(0), heig user wants the wa ndicular to the shor	of a groundwater mound bene "Simulation of groundwater n specific yield (Sy), horizontal h cht of the water table (f the boi	iounding be						U.S. Geologi	cal Survey	
values shown will be ind input Values 0.5950 // 0.150 S 8.25 // 27.000 // 13.000 // 12.000 hill 14.000 hill	ow are values that i from each time ANY correct. Use consis R K K K K Y t ((0) nax) max) e from of basin	transition changes personation (t side, specify y as the short di which water-table aquifer thick can be changed by the user. C of the two percent of poursar tent units for all input values (use consistent units (e.g. fe Recharge (infiltration) ra Specific yield, Sy (dimensi Horizontal hydraulic con 1/2 length of basin (y dim duration of infiltration p initial thickness of satural maximum thickness of satural maximum groundwater in	ar to the ion mension, x a ness are calc alls highlight or example, et & days or te (feet/da ionless, be ductivity, K ection, in fa ection, in fa eriod (days ated zone (in sturated zone)	aquifer is the g side, specif as the long di culated. red in red and atherwise nec , feet and day r inches & hou ret inches & hou ret) set) feet) set) feet) one (beneat)	datum) F y x as the s mension. output va ressary iter (3) urs) d 1) y)*	or a square b short dimensi All distances a lues based or ations to con Conve Inch/h hours	asin the half w on and y as the are from the c user-specifie verge on the c usion Table bour feet/c 0.67 2,00 days 36 nd of infiltra	infiltration (indth equals e long dimen- enter of the d inputs. The orrect solut 1.33 4.00 in st (US) (1.50 hyd tion period	the half leng nsion. Conve basin. User he user MUS ion will not b he report acco 65 SIR 2010-5 d) is assumed 1 traufic conduct	th (x = y). For a resely, if the use s can change th Frick the blue te done and mpanying this sp 1021, vertical soil to be one-centh f	readsheet
1.710 2 0.409 4 0.400 5 0.400 6 0.445 7 0.458 8 0.457 9	0 20 50 50 50 70 80 90 90	Re-Calculate		undwat	er Mo	unding,	in feet				
	20	1,500	1	-							
		1,000		X							
		0,500		-	-	-					
		0.000				-	-				

	RICH		CALCULATIONS				0200427-000
							4 of 4
roject:	BCP-CG Harbor	Property LLC					15-Apr-21
	2 Harbor Street,	/ 329 Northern Avenu	5				SHL
ubject:	Stormwater Sto	rage and Infiltration Sv	/stems: System 2B				MDK
This spreadsheet Scientific Investig The user must sp thickness of the s rectangular basin distances from th Cells highlighted "Re Calculate No values shown will Input Values 0.5800 0.150 8.25 20.000 13.000 3.000 12.000 12.000 13.000 3.000 12.000 13.000 12.000 13.000 12.000	i will calculate the hei gations Report 2010- secify infiltration rate saturated zone (hi(0), n, if the user wants th sperpendicular to the he center of the basin in yellow are values to w button each time if be incorrect. Use of <i>R</i> Sy K X y t hi(0) h(max) Δh(max) Distance from enter of basin	5102 "Simulation of groundw (R), specific yield (Sy), horizo, height of the water table if the water table changes perpe- short side, specify y as the s nat which water-table aquife that can be changed by the u ANY of the user specified in onsistent units for all input v. use tonsistent units (Recharge (infiltrati Specific yield, Sy (d Horizontal hydraul 1/2 length of basin duration of infiltrat initial thickness	I beneath a stormwater infiltration rater mounding beneath hypotheti intal hydraulic conductivity (Kh), the bottom of the aquifer is the dar indicular to the long side, specify x hort dimension, x as the long dime thickness are calculated. ser. Cells highlighted in red are out outs are changed, otherwise necess alues (for example, feet and days) e.g. feet & days or inches & hours) on) rate (feet/day) immensionless, between 0 and 0 is conductivity, Kh (feet/day)* (x direction, in feet) (y direction, in feet) (bion period (days) saturated zone (beneath center vater mounding (beneath center	ical stormwater infili basin dimensions (k, tuni), For a square b as the short dimens ension All distances input values based or sary iterations to cor) Conve linch/i L) hours center of basin at e	tration basins". y), duration of hasin the half with ion and y as this are from the c nuser-specific werge on the c ersion Table hour feet/d 0.67 2.00 days 36 end of infiltrat	infiltration period with equals the 1 e long dimension enter of the basi d inputs. The op- correct solution v lay 1.33 4.00 In the re- (USGS SI (R/d1 to a 1.50 hydraulia tion period)	od (t), and the initial half length (x = y). For a h. Conversely, if the user in: Users can thange the arr MU/ST click fra: blue
0.449	40 50 60		Groundwater	Mounding,	in feet		1
	70	1,800	1		10000		
0.329	80	1.600					
0.229 0.164 0.334	90						
0.164 0.114 0.114	100	1.200	1				
0.155		and the second se					
0.164 0.114 0.114	100	1.200 1.000 0.800 0.600					
0.154 0.154 0.154	100	1.200 1.000 0.800 0.600 0.400					
0.154 0.154 0.154	100	1.200 1.000 0.800 0.600					

\\haleyaldrich.com\share\CF\Projects\0200427\Stormwater Management\Calculations\[2021-0415-HAI-2 Harbor St Calculation Package F_mk.xlsx]