
Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP:

MassDEP File Number

Document Transaction Number Boston City/Town

use the return

key.

A. General Information

1. Project Location (Note: electronic filers will click on button to locate project site):

	Boston	02129
a. Street Address	b. City/Town	c. Zip Code
Latituda and Langituday	42.3844	-71.0528
Latitude and Longitude:	d. Latitude	e. Longitude
	0202755004	
f. Assessors Map/Plat Number	g. Parcel /Lot Number	
Applicant:		
John	O'Donnell	
a. First Name	b. Last Name	
Diversified Automotive, Inc.		
c. Organization		
100 Terminal Street		
d. Street Address		
Boston	MA	02129
e. City/Town	f. State	g. Zip Code
617-936-2108	john.o'donnell@divers	ifiedauto.com
h. Phone Number i. Fax Number	j. Email Address	
Property owner (required if different from James a. First Name Massport	n applicant): Check if n Stolecki b. Last Name	nore than one owner
James a. First Name Massport	Stolecki	nore than one owner
James a. First Name Massport c. Organization	Stolecki	nore than one owner
James a. First Name Massport	Stolecki	nore than one owner
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address	Stolecki b. Last Name	
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston	Stolecki	02128
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town	<u>Stolecki</u> b. Last Name <u>MA</u> f. State	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston	<u>Stolecki</u> b. Last Name	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552	<u>Stolecki</u> b. Last Name <u>MA</u> f. State jstolecki@massport.cc	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number i. Fax Number	<u>Stolecki</u> b. Last Name <u>MA</u> f. State jstolecki@massport.cc	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any):	MA f. State jstolecki@massport.cc j. Email address	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any): Brad	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any): Brad a. First Name	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any): Brad a. First Name GEI Consultants, Inc. c. Company 124 Grove Street, Suite 300	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any): Brad a. First Name GEI Consultants, Inc. c. Company	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any): Brad a. First Name GEI Consultants, Inc. c. Company 124 Grove Street, Suite 300	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number i. Fax Number Representative (if any): Brad a. First Name GEI Consultants, Inc. c. Company 124 Grove Street, Suite 300 d. Street Address	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address Saunders b. Last Name	<u>02128</u> g. Zip Code om
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any): Brad a. First Name GEI Consultants, Inc. c. Company 124 Grove Street, Suite 300 d. Street Address Franklin	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address Saunders b. Last Name	02128 g. Zip Code om
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number i. Fax Number	<u>Stolecki</u> b. Last Name <u>MA</u> f. State jstolecki@massport.cc	02128 g. Zip Code
James a. First Name Massport c. Organization One Harborside Drive, Suite 200 d. Street Address East Boston e. City/Town 617-568-3552 h. Phone Number Representative (if any): Brad a. First Name GEI Consultants, Inc. c. Company 124 Grove Street, Suite 300 d. Street Address Franklin e. City/Town	Stolecki b. Last Name MA f. State jstolecki@massport.cc j. Email address Saunders b. Last Name	02128 g. Zip Code om

\$787.50	\$712.50	\$75.00
a. Total Fee Paid	b. State Fee Paid	c. City/Town Fee Paid

4

Massachusetts Department of Environmental Protection Provided by MassDEP:

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP File Number
Document Transaction Number
Boston

City/Town

A. General Information (continued)

6. General Project Description:

The project is maintenance dredging of the berthing area fronting the north side of the pier located at 100 Terminal Street. The footprint of the dredging area is 1,100 feet by 99.5 feet and the estimated volume of material to be dredged is 15,750 cubic yards. All dredged material will be disposed in the Boston Harbor CAD cell. For additional detail, see attached Project Description.

7a. Project Type Checklist: (Limited Project Types see Section A. 7b.)

1.	Single Family Home	2. 🔲 Residential Subdivision
3.	Commercial/Industrial	4. Dock/Pier
5.	Utilities	6. 🗌 Coastal engineering Structure
7.	Agriculture (e.g., cranberries, forestry)	8. 🔲 Transportation
	_	

- 9. 🗌 Other
- 7b. Is any portion of the proposed activity eligible to be treated as a limited project (including Ecological Restoration Limited Project) subject to 310 CMR 10.24 (coastal) or 310 CMR 10.53 (inland)?

1. 🗌 Yes	If yes, describe which limited project applies to this project. (See 310 CMR 10.24 and 10.53 for a complete list and description of limited project types)
	····-·································

2. Limited Project Type

If the proposed activity is eligible to be treated as an Ecological Restoration Limited Project (310 CMR10.24(8), 310 CMR 10.53(4)), complete and attach Appendix A: Ecological Restoration Limited Project Checklist and Signed Certification.

8. Property recorded at the Registry of Deeds for:

Suffolk	
a. County	b. Certificate # (if registered land)
8216/8310	582/316
c. Book	d. Page Number

B. Buffer Zone & Resource Area Impacts (temporary & permanent)

- 1. Buffer Zone Only Check if the project is located only in the Buffer Zone of a Bordering Vegetated Wetland, Inland Bank, or Coastal Resource Area.
- 2. Inland Resource Areas (see 310 CMR 10.54-10.58; if not applicable, go to Section B.3, Coastal Resource Areas).

Check all that apply below. Attach narrative and any supporting documentation describing how the project will meet all performance standards for each of the resource areas altered, including standards requiring consideration of alternative project design or location.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Provided by MassDEP:

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP File Number

Document Transaction Number Boston City/Town

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

	<u>Resou</u>	r <u>ce Area</u>	Size of Proposed Alteration	Proposed Replacement (if any)
For all projects	a. 🗌	Bank	1. linear feet	2. linear feet
affecting other Resource Areas,	b. 🔄	Bordering Vegetated Wetland	1. square feet	2. square feet
please attach a narrative explaining how the resource	c. 🗌	Land Under Waterbodies and	1. square feet	2. square feet
area was delineated.		Waterways	3. cubic yards dredged	
domioatoa.	<u>Resou</u>	rce Area	Size of Proposed Alteration	Proposed Replacement (if any)
	d. 🗌	Bordering Land Subject to Flooding	1. square feet	2. square feet
			3. cubic feet of flood storage lost	4. cubic feet replaced
	e. 🗌	Isolated Land Subject to Flooding	1. square feet	
			2. cubic feet of flood storage lost	3. cubic feet replaced
	f. 🗌	Riverfront Area	1. Name of Waterway (if available) - sp	ecify coastal or inland
	2.	Width of Riverfront Area	a (check one):	
		25 ft Designated	Densely Developed Areas only	
		🔲 100 ft New agricu	ltural projects only	
		200 ft All other pr	ojects	
	3.	Total area of Riverfront A	rea on the site of the proposed proje	ect: square feet
	4.	Proposed alteration of the	e Riverfront Area:	
	a. 1	total square feet	b. square feet within 100 ft.	c. square feet between 100 ft. and 200 ft.
	5.	Has an alternatives analy	sis been done and is it attached to t	his NOI?
	6.	Was the lot where the act	ivity is proposed created prior to Au	gust 1, 1996? 🗌 Yes 🗌 No
:	3. 🛛 Co	astal Resource Areas: (Se	ee 310 CMR 10.25-10.35)	
	Note:	for coastal riverfront area	s, please complete Section B.2.f. a	bove.

Provided by MassDEP: Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP File Number

Document Transaction Number Boston City/Town

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

Check all that apply below. Attach narrative and supporting documentation describing how the project will meet all performance standards for each of the resource areas altered, including standards requiring consideration of alternative project design or location.

Online Users: Include your document		<u>Resour</u>	<u>ce Area</u>	Size of Proposed Altera	ation	Proposed Replacement (if any)
transaction number		a. 🔀	Designated Port Areas	Indicate size under La	and Under	the Ocean, below
(provided on your receipt page) with all supplementary information you		b. 🔀	Land Under the Ocean	109,450 1. square feet 15,750 2. cubic yards dredged		
submit to the Department.		c. 🗌	Barrier Beach	Indicate size under Coa	astal Beacl	hes and/or Coastal Dunes below
		d. 🗌	Coastal Beaches	1. square feet		2. cubic yards beach nourishment
		e. 🗌	Coastal Dunes	1. square feet		2. cubic yards dune nourishment
				Size of Proposed Altera	ation	Proposed Replacement (if any)
		f.	Coastal Banks	1. linear feet		
		g. 🛄	Rocky Intertidal Shores	1. square feet		
		h. 🗌	Salt Marshes	1. square feet		2. sq ft restoration, rehab., creation
		i. 📘	Land Under Salt Ponds	1. square feet		
				2. cubic yards dredged		
		j. 🗌	Land Containing Shellfish	1. square feet		
		k. 🛛	Fish Runs			s, inland Bank, Land Under the Waterbodies and Waterways,
				15,750		
		ı. 🗖	Land Subject to	1. cubic yards dredged		
			Coastal Storm Flowage	1. square feet		
	4.	If the p	footage that has been ente			esource area in addition to the e, please enter the additional
		a. square	e feet of BVW	b. squa	are feet of Sa	It Marsh
	5.	Pro	ject Involves Stream Cross	ings		
		a. numbe	er of new stream crossings	b. num	ber of replac	ement stream crossings

Massachusetts Department of Environmental Protection Provided by MassDEP:

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP	File	Number	

Document Transaction Number Boston City/Town

C. Other Applicable Standards and Requirements

This is a proposal for an Ecological Restoration Limited Project. Skip Section C and complete Appendix A: Ecological Restoration Limited Project Checklists – Required Actions (310 CMR 10.11).

Streamlined Massachusetts Endangered Species Act/Wetlands Protection Act Review

 Is any portion of the proposed project located in Estimated Habitat of Rare Wildlife as indicated on the most recent Estimated Habitat Map of State-Listed Rare Wetland Wildlife published by the Natural Heritage and Endangered Species Program (NHESP)? To view habitat maps, see the Massachusetts Natural Heritage Atlas or go to http://maps.massgis.state.ma.us/PRI_EST_HAB/viewer.htm.

a. 🗌 Yes 🖾 No	If yes, include proof of mailing or hand delivery of NOI to:
	Natural Heritage and Endangered Species Program
	Division of Fisheries and Wildlife
8/1/17	1 Rabbit Hill Road - Westborough, MA 01581
b. Date of map	

If yes, the project is also subject to Massachusetts Endangered Species Act (MESA) review (321 CMR 10.18). To qualify for a streamlined, 30-day, MESA/Wetlands Protection Act review, please complete Section C.1.c, and include requested materials with this Notice of Intent (NOI); *OR* complete Section C.2.f, if applicable. *If MESA supplemental information is not included with the NOI, by completing Section 1 of this form, the NHESP will require a separate MESA filing which may take up to 90 days to review (unless noted exceptions in Section 2 apply, see below).*

c. Submit Supplemental Information for Endangered Species Review*

1. Dercentage/acreage of property to be altered:

(a) within wetland Resource Area

percentage/acreage

(b) outside Resource Area

percentage/acreage

- 2. Assessor's Map or right-of-way plan of site
- 2. Project plans for entire project site, including wetland resource areas and areas outside of wetlands jurisdiction, showing existing and proposed conditions, existing and proposed tree/vegetation clearing line, and clearly demarcated limits of work **
 - (a) Project description (including description of impacts outside of wetland resource area & buffer zone)
 - (b) Photographs representative of the site

^{*} Some projects **not** in Estimated Habitat may be located in Priority Habitat, and require NHESP review (see http://www.mass.gov/eea/agencies/dfg/dfw/natural-heritage/regulatory-review/). Priority Habitat includes habitat for state-listed plants and strictly upland species not protected by the Wetlands Protection Act.

^{**} MESA projects may not be segmented (321 CMR 10.16). The applicant must disclose full development plans even if such plans are not required as part of the Notice of Intent process.

Massachusetts Department of Environmental Protection Provided by MassDEP:

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

MassDEP File Number

Document Transaction Number Boston City/Town

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

C. Other Applicable Standards and Requirements (cont'd)

(c) MESA filing fee (fee information available at <u>http://www.mass.gov/dfwele/dfw/nhesp/regulatory_review/mesa/mesa_fee_schedule.htm</u>). Make check payable to "Commonwealth of Massachusetts - NHESP" and *mail to NHESP* at above address

Projects altering 10 or more acres of land, also submit:

- (d) Vegetation cover type map of site
- (e) Project plans showing Priority & Estimated Habitat boundaries
- (f) OR Check One of the Following
- 1. Project is exempt from MESA review. Attach applicant letter indicating which MESA exemption applies. (See 321 CMR 10.14, <u>http://www.mass.gov/dfwele/dfw/nhesp/regulatory_review/mesa/mesa_exemptions.htm;</u> the NOI must still be sent to NHESP if the project is within estimated habitat pursuant to 310 CMR 10.37 and 10.59.)

2	Separate MESA review ongoing.		
Z. 🗀	Separate MESA review ongoing.	a NHESP Tracking #	b Date submitted to NHESP

- 3. Separate MESA review completed. Include copy of NHESP "no Take" determination or valid Conservation & Management Permit with approved plan.
- 3. For coastal projects only, is any portion of the proposed project located below the mean high water line or in a fish run?

а. 🗌	Not applicable	 project is 	in inland resource area only	b. 🛛 Yes	🗌 No
------	----------------	--------------------------------	------------------------------	----------	------

If yes, include proof of mailing, hand delivery, or electronic delivery of NOI to either:

South Shore - Cohasset to Rhode Island border, and the Cape & Islands:	North Shore - Hull to New Hampshire border:

Division of Marine Fisheries -Southeast Marine Fisheries Station Attn: Environmental Reviewer 836 South Rodney French Blvd. New Bedford, MA 02744 Email: <u>DMF.EnvReview-South@state.ma.us</u> Division of Marine Fisheries -North Shore Office Attn: Environmental Reviewer 30 Emerson Avenue

Gloucester, MA 01930 Email: <u>DMF.EnvReview-North@state.ma.us</u>

Also if yes, the project may require a Chapter 91 license. For coastal towns in the Northeast Region, please contact MassDEP's Boston Office. For coastal towns in the Southeast Region, please contact MassDEP's Southeast Regional Office.

	Bu M	assachusetts Department of Environmental Protection ureau of Resource Protection - Wetlands VPA Form 3 – Notice of Intent Document Transaction N	Number
	IVIč	assachusetts Wetlands Protection Act M.G.L. c. 131, §40 Boston	
	_	City/Town	
	C.	. Other Applicable Standards and Requirements (cont'd)	
	4.	Is any portion of the proposed project within an Area of Critical Environmental Concern (ACEC	;)?
Online Users: Include your document		a. Yes No If yes, provide name of ACEC (see instructions to WPA Form 3 or Mas Website for ACEC locations). Note: electronic filers click on Website.	₃sDEP
transaction number		b. ACEC	
(provided on your receipt page) with all	5.	Is any portion of the proposed project within an area designated as an Outstanding Resource (ORW) as designated in the Massachusetts Surface Water Quality Standards, 314 CMR 4.00?	
supplementary information you		a. 🗌 Yes 🛛 No	
submit to the Department.	6.	Is any portion of the site subject to a Wetlands Restriction Order under the Inland Wetlands Restriction Act (M.G.L. c. 131, § 40A) or the Coastal Wetlands Restriction Act (M.G.L. c. 130, §	§ 105)?
		a. 🗌 Yes 🛛 No	
7. Is this project subject to provisions of the MassDEP Stormwater Management Standards?		Is this project subject to provisions of the MassDEP Stormwater Management Standards?	
		a. Yes. Attach a copy of the Stormwater Report as required by the Stormwater Managem	ient
		Standards per 310 CMR 10.05(6)(k)-(q) and check if: 1. Applying for Low Impact Development (LID) site design credits (as described in Stormwater Management Handbook Vol. 2, Chapter 3)	
		2. A portion of the site constitutes redevelopment	
		3. Proprietary BMPs are included in the Stormwater Management System.	
		b. 🛛 No. Check why the project is exempt:	
		1. Single-family house	
		2. Emergency road repair	
		3. Small Residential Subdivision (less than or equal to 4 single-family houses or less or equal to 4 units in multi-family housing project) with no discharge to Critical Areas.	
	D.	. Additional Information	
		This is a proposal for an Ecological Restoration Limited Project. Skip Section D and complete Appendix A: Ecological Restoration Notice of Intent – Minimum Required Documents (310 CM)	R

10.12).

Applicants must include the following with this Notice of Intent (NOI). See instructions for details.

Online Users: Attach the document transaction number (provided on your receipt page) for any of the following information you submit to the Department.

- 1. USGS or other map of the area (along with a narrative description, if necessary) containing sufficient information for the Conservation Commission and the Department to locate the site. (Electronic filers may omit this item.)
- 2. Plans identifying the location of proposed activities (including activities proposed to serve as a Bordering Vegetated Wetland [BVW] replication area or other mitigating measure) relative to the boundaries of each affected resource area.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Provided by MassDEP:

MassDEP File Number

Document Transaction Number Boston City/Town

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

D. Additional Information (cont'd)

- 3. Identify the method for BVW and other resource area boundary delineations (MassDEP BVW Field Data Form(s), Determination of Applicability, Order of Resource Area Delineation, etc.), and attach documentation of the methodology.
- 4. \square List the titles and dates for all plans and other materials submitted with this NOI.

	e attached List of Attachments.			
а. Р	lan Title			
b. P	repared By	c. Signed and Stamped by		
d. F	d. Final Revision Date e. Scale			
f. Ac	dditional Plan or Document Title		g. Date	
5.	If there is more than one property owner, pl listed on this form.	ease attach a list of these p	property owners not	
6. 🗌	Attach proof of mailing for Natural Heritage and Endangered Species Program, if needed.			
7. 🛛	Attach proof of mailing for Massachusetts Division of Marine Fisheries, if needed.			
8. 🛛	Attach NOI Wetland Fee Transmittal Form			
9. 🗌	Attach Stormwater Report, if needed.			

E. Fees

1. Fee Exempt: No filing fee shall be assessed for projects of any city, town, county, or district of the Commonwealth, federally recognized Indian tribe housing authority, municipal housing authority, or the Massachusetts Bay Transportation Authority.

Applicants must submit the following information (in addition to pages 1 and 2 of the NOI Wetland Fee Transmittal Form) to confirm fee payment:

754544	10/2/2020
2. Municipal Check Number	3. Check date
754545	10/2/2020
4. State Check Number	5. Check date
GEI Consultants, Inc.	
6. Payor name on check: First Name	7. Payor name on check: Last Name

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provi	ided by MassDEP:
	MassDEP File Number
	Document Transaction Number
	Boston
	City/Town

F. Signatures and Submittal Requirements

I hereby certify under the penalties of perjury that the foregoing Notice of Intent and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made by Certificate of Mailing or in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location,

Her We gund	October 8, 2020
1. Signature of Applicant	2. Date
fames Stolectic	10/16/2020
3. Signature of roperty Owner (if different)	4. Date
5. Signature of Representative (if any)	<u> </u>

For Conservation Commission:

Two copies of the completed Notice of Intent (Form 3), including supporting plans and documents, two copies of the NOI Wetland Fee Transmittal Form, and the city/town fee payment, to the Conservation Commission by certified mail or hand delivery.

For MassDEP:

One copy of the completed Notice of Intent (Form 3), including supporting plans and documents, one copy of the NOI Wetland Fee Transmittal Form, and a **copy** of the state fee payment to the MassDEP Regional Office (see Instructions) by certified mail or hand delivery.

Other:

If the applicant has checked the "yes" box in any part of Section C, Item 3, above, refer to that section and the Instructions for additional submittal requirements.

The original and copies must be sent simultaneously. Failure by the applicant to send copies in a timely manner may result in dismissal of the Notice of Intent.

Checklist for Filing a Notice of Intent with Boston Conservation Commission

In order for the Boston Conservation Commission to effectively process your Notice of Intent, BCC requests that you complete the checklist below and include it with your submission. If you should need assistance please contact Commission Staff: 617-635-3850 (cc@boston.gov).

Please Submit the Following to the Conservation Commission:

- Two copies (a signed original and 1 copy) of a completed Notice of Intent (WPA Form 3)
- Two copies (a signed original and 1 copy) of a completed Boston Notice of Intent (Local Form) Not Applicable
- Two copies of plans (reduced to 11" X 17") in their final form with engineer's stamp affixed supporting calculations and other documentation necessary to completely describe the proposed work and mitigating measures. Plans must include existing conditions, the proposed project, erosion controls and mitigation measures, grading and spot elevations and all wetland resource areas and associated buffer zones. Some projects may require both an aerial view of the plans along with a profile view of plans depending on the scope of work.
- Two copies of an 8 ¹/₂" x 11" section of the <u>USGS quadrangle map</u> of the area, containing sufficient information for the Conservation Commission and the Department to locate the site of the work.
- If applicable) Two copies the Federal Emergency Management Agency Flood Insurance Rate Map for the project site. FEMA Flood Maps: <u>https://msc.fema.gov/portal</u>.
- Two copies of the determination regarding the Natural Heritage and Endangered Species Program: Review Section C. Other Applicable Standards and Requirements of the Notice of Intent, page 4 of 8, pertaining to wildlife habitat. The Conservation Commission and the <u>Natural Heritage & Endangered Species Program</u> have the maps necessary to make this determination. Not Applicable
- □ (If applicable) Two hard copies of a Stormwater Report to document compliance with the Stormwater Management Standards per 310 CMR 10.05(6)(k)-(q), including associated drainage calculations for rooftops, parking lots, driveways, etc., for the required design storm events. Not Applicable
- (If applicable) A narrative detailing best management practices for stormwater management as set forth in the Stormwater Management Standards of the Massachusetts Department of Environmental Protection and any separate standards and guidelines prepared by the City and the Boston Water and Sewer Commission. Not Applicable
- □ (If applicable) Two hard copies of the Checklist for Stormwater Report Not Applicable
- Details of the stormwater management system, including: catch basins, oil separating tanks, detention basins, outfalls, sewer connections, etc. Not Applicable
- Any photographs related to the project representing the wetland resource areas. Not Applicable
- Two copies of a detailed project narrative describing the following: an overview of the entire project, the work proposed within wetland resource areas and/or buffer zones; how the performance standards specific to the wetland resource areas will be met (listing out each performance standard); a consideration of the effect that projected sea level rise, changes in storm intensity and frequency, and other consequences of climate change may have on the resource areas and proposed activities; construction equipment and material involved; and measures to protect wetland resource areas and mitigate impacts. The applicant shall also include narrative on how they plan to integrate climate change and adaptation planning considerations into their project to promote climate resilience to protect and promote Resource Area Values and functions into the future.
- Two copies of an Abutters List, Affidavit of Service and <u>Abutter Notification</u>, filed concurrently with the Notice of Intent. Abutter notices shall be sent in both English and the second most commonly spoken language(s) in the neighborhood(s) where the project is proposed. Notices shall also include Babel notice cards for additional translation and language access services. <u>All abutters within 300' of the project</u>

Checklist for Filing a Notice of Intent with Boston Conservation Commission

property line must be notified including those in a neighboring municipality. In such an instance, a copy of the filing must also be sent to the local Conservation Commission of the neighboring municipality. EXCEPTION: When work is in land under water bodies and waterways or on a tract of land greater than 50 acres, written notification must only be given to abutters within 300 feet of the "project site."

Two copies of the BPDA Climate Resiliency Checklist (for new buildings). This can be completed online at <u>http://www.bostonplans.org/planning/planning-initiatives/article-37-green-building-guidelines</u>. Please print the pdf that you will receive via email after completion and include it in your submission. Not Applicable

Electronic copies. Documents may be submitted via email, or via an email link to downloadable documents.

To minimize the use of non-recyclable materials please do not include vinyl or plastic binders, bindings, folders or covers with the filing. Staples and binder clips are good choices.

J.F. Moran Terminal Maintenance Dredging – Boston, MA *Wetlands Notice of Intent List of Attachments*

Project Description (pages 1-5)

Figure Sheets

- 1. Locus Plan
 - Prepared by: GEI Consultants, Inc.
 - Date: 1/20/21
 - Scale: 1" = 2,000'
- 2. Existing Conditions Plan
 - Prepared by: Russell Titmuss
 - Signed and Stamped by: Russell Titmuss
 - Date: 1/20/21
 - Scale: 1" = 150'
- 3. Dredging Plan
 - Prepared by: Russell Titmuss
 - Signed and Stamped by: Russell Titmuss
 - Date: 1/20/21
 - Scale: 1" = 150'
- 4. Dredging Section
 - Prepared by: Russell Titmuss
 - Signed and Stamped by: Russell Titmuss
 - Date: 1/20/21
 - Scale: 1" = 20'
- 5. CAD Cell
 - Prepared by: Russell Titmuss
 - Signed and Stamped by: Russell Titmuss
 - Date: 1/20/21
 - Scale: 1" = 500'
- 6. Boston Harbor CAD Cell Plan View
 - Prepared by: Russell Titmuss
 - Signed and Stamped by: Russell Titmuss
 - Date: 1/20/21
 - Scale: 1" = 200'
- 7 Boston Harbor CAD Cell Section
 - Prepared by: Russell Titmuss
 - Signed and Stamped by: Russell Titmuss
 - Date: 1/20/21
 - Scale: 1" = 300' (horizontal) / 1" = 30' (vertical)

Miscellaneous Documents

- NOI Wetland Fee Transmittal Form
- Affidavit of Service Abutter Notification
- Notification to Abutters
- Certified Listing of Abutters
- Proof of Mailing to Abutters
- FEMA FIRMette (City of Boston Panel 25025C0018J) dated 3/16/16
- Proof of Mailing (email) to Division of Marine Fisheries

Attachment A. Sediment Sampling Report

J.F. Moran Terminal Maintenance Dredging – Boston, MA Wetlands Notice of Intent – Project Description

Existing Conditions

The project site consists of the Mystic River water sheet and approximately 2.5 acres of Land Under the Ocean wetland resource area located along the north face of the concrete pier at the J.F. Moran cargo terminal on Terminal Street in Boston (see Sheet 1 – Locus Plan). The property is owned by Massport and leased to Diversified Automotive, Inc., with the pier being used for ship-to-shore transfer of automobiles. The site was dredged to restore the berthing area to a depth of 40 to 42 feet (MLW) in 1994 and is located within the boundaries of the Mystic River Designated Port Area. FEMA flood elevation information at the project site is provided in Attachment 1.

Sediments at the project site consist of 31 to 57 percent fine-grain materials and 43 to 57 percent sands and the chemical composition is typical of Boston Harbor maintenance dredging material. The results of bulk chemistry analysis of the sediments are presented in Attachment A – Sediment Sampling Report.

MassGIS data (sourced using OLIVER) indicate that the area is unsuitable habitat for shellfish and is "prohibited" for the growing of shellfish. Further, the area to be dredged does not support beds of submerged aquatic vegetation and is not mapped by the Massachusetts Natural Heritage and Endangered Species Program as either estimated habitat of rare wetland wildlife or priority habitat for rare species. The Mystic River is recognized as anadromous fish habitat, primarily for alewife.

Proposed Action

The proposed project is maintenance dredging of the berthing area along the north face of the concrete pier. The dredging will restore the overall berth to a depth of 40 to 42 feet (MLLW). The footprint of the proposed area of dredging is approximately 1,100 feet x 99.5 feet, inclusive of side slopes (see Sheets 3 and 4). It is estimated that the dredging will generate approximately 15,750 cubic yards of spoil, all of which is to be disposed in the Boston Harbor Confined Aquatic Disposal (CAD) cell created by the U.S. Army Corps of Engineers and located in the harbor's Main Ship Channel as depicted in Sheet 5. The CAD cell was constructed specifically for the purpose of accommodating the disposal of contaminated sediments from Boston Harbor and Massport facilities.

All dredging will be conducted from the water using a barge-mounted crane. An environmental bucket dredge will be used to remove silts to minimize incidental release and resuspension of sediments. Monitoring of similar projects within Boston Harbor, has indicated that the use of an environmental bucket is an effective method of silt containment during dredging operations. In the event that any harder-material spot shoals remain after removal of the silts, a conventional clamshell bucket will be utilized to complete the dredging to establish the required minimum project depth for vessel safety. Water quality monitoring will be conducted during this work to verify that turbidity outside of the work area remains below performance criteria. Use of a turbidity curtain to minimize dispersal of resuspended sediments at this site was considered but deemed impractical, due to water depths and tidal conditions. No dredging will occur during the MA-DMF recommended time-of-year (TOY) restriction period for the protection of Mystic River anadromous fish (i.e., February 15 through July 15).

Dredged material will be placed in a split hull scow and transported directly from the dredge site to the CAD Cell. Excess water may be decanted from the scow after filtration or settlement to remove suspended solids. Water quality monitoring will be performed during any decanting operation to verify compliance with water quality standards. Consistent with other CAD cell disposal activities, disposal will take place within one (1) hour before and two (2) hours after slack tide.

Impacts to Wetland Resource Areas

Land Under the Ocean

Definition and Existing Conditions

Land Under the Ocean (LUTO) consists of land extending from the mean low water line seaward to the boundary of the municipality's jurisdiction and includes land under estuaries.

At the project site, LUTO consists of the bed of the Mystic River. Within the proposed dredging footprint, the bed is composed of greater than 30 percent fine grain material and greater than 50 percent sand (see Attachment A).

Compliance with Performance Standards

Applicable performance standards for activities conducted within this resource area are defined at 310 CMR 10.25(4, 6, and 7). The performance standards at 310 CMR 10.25(3) are not applicable as the project is not "improvement dredging". The performance standards at 310 CMR 10.25(5) are not applicable as the project is "maintenance dredging" subject to the provisions of 310 CMR 10.25(4).

Performance Standard 4

Performance Standard 4 states that maintenance dredging for navigational purposes affecting land under the ocean shall be designed and carried out using the best available measures so as to minimize adverse effects on such interests caused by changes in marine productivity which will result from the suspension or transport of pollutants, increases in turbidity, the smothering of bottom organisms, the accumulation of pollutants by organisms, or the destruction of marine fisheries habitat or wildlife habitat.

Compliance with Performance Standard 4

The proposed maintenance dredging will be conducted using the best available measures to minimize adverse effects, such as the suspension or transport of pollutants, increases in turbidity, the smothering of bottom organisms, the accumulation of pollutants by organisms, or the destruction of fisheries habitat or nutrient source areas. For the project site, the best practical measures include use of an environmental bucket dredge to minimize the incidental release of dredged silts during the dredging operation and avoidance of dredging activities during the critical period of anadromous fish activity in the area (i.e., February 15 through July 15). The use of a turbidity curtain at this site to control the release of suspended sediments is not practical due to water depth and level of tidal energy experienced.

Additional best practical measures to be implemented include the maintenance of a complete spill containment kit on the dredge barge at all times. The spill containment kit will include "Speedy Dry", or equivalent, and an oil sorbent boom for use in the event of a petroleum-based fluid spill or leak. Further, the dredging equipment will be staffed at all times while operational

and will be inspected daily for leakage.

Performance Standard 6

Performance Standard 6 states that projects which affect land under the ocean shall if waterdependent be designed and constructed, using best available measures, so as to minimize adverse effects

Compliance with Performance Standard 6

The proposed maintenance dredging of the berthing area at the J.F. Moran Terminal is a waterdependent use/activity and will be conducted using the best available measures to minimize adverse effects, such as the suspension or transport of pollutants, increases in turbidity, the smothering of bottom organisms, the accumulation of pollutants by organisms, or the destruction of fisheries habitat or nutrient source areas. For the project site, the best practical measures include use of an environmental bucket dredge to minimize the incidental release of dredged silts during the dredging operation and avoidance of dredging activities during the critical period of anadromous fish activity in the area (i.e., February 15 through July 15). The use of a turbidity curtain at this site to control the release of suspended sediments is not practical due to water depth and level of tidal energy experienced.

Additional best available measures to be implemented include the maintenance of a complete spill containment kit on the dredge barge at all times. The spill containment kit will include "Speedy Dry", or equivalent, and an oil sorbent boom for use in the event of a petroleum-based fluid spill or leak. Further, the dredging equipment will be staffed at all times while operational and will be inspected daily for leakage.

Performance Standard 7

Performance Standard 7 states that, notwithstanding the provisions of 310 CMR 10.25(3) through (6), no project may be permitted which will have any adverse effect on specified habitat sites of rare vertebrate or invertebrate species, as identified by procedures established under 310 CMR 10.37.

Compliance with Performance Standard 7

A review of maps prepared by the Massachusetts Natural Heritage and Endangered Species Program (updated August 1, 2017) has revealed that the project area is not recognized as habitat for rare species.

Designated Port Area

Definition and Existing Conditions

Designated Port Area (DPA) consists of those areas specifically designated in 301 CMR 25.00. The project site is located entirely within the Mystic River DPA.

Compliance with Performance Standards

Applicable performance standards for activities conducted within this resource area are defined at 310 CMR 10.26(3 and 4).

Performance Standard 3

Performance Standard 3 states that projects shall be designed and constructed, using best practical measures, so as to minimize adverse effects on marine fisheries caused by changes in water circulation and water quality, including, but not limited to, other than natural fluctuations in the level of dissolved oxygen, temperature or turbidity, or the addition of pollutants.

Compliance with Performance Standard 3

As the project is maintenance dredging designed to restore the depth of the berthing area to a depth most recently established in 1994 at 40 feet below mean low water, it will have no more than a de minimis effect on water circulation and water quality. The use of best available measures, as presented herein in the discussion of compliance with LUTO performance standards, will ensure that potential adverse effects on water quality are minimized to the extent practical.

Performance Standard 4

Performance Standard 4 states that projects shall be designed and constructed, using the best practical measures, so as to minimize, adverse effects on storm damage prevention or flood control caused by changes in such land's ability to provide support for adjacent coastal banks or adjacent coastal engineering structures.

Compliance with Performance Standard 4

As the project is maintenance dredging designed to restore the depth of the berthing area to a depth most recently established in 1994 at 40 feet below mean low water, it will have no adverse effect on storm damage prevention or flood control caused by changes in such land's ability to provide support for adjacent coastal banks or adjacent coastal engineering structures, such as the adjacent pier.

Anadromous and Catadromous Fish Run

Definition and Existing Conditions

Anadromous and Catadromous Fish Runs (ACFR) consists of that area within estuaries, ponds, streams, creeks, rivers, lakes or coastal waters, which is a spawning or feeding ground or passageway for anadromous or catadromous fish and which is identified by the Division of Marine Fisheries or has been mapped on the Coastal Atlas of the Coastal Zone Management Program.

The Mystic River at the project site is recognized as anadromous fish habitat, primarily for alewife.

Compliance with Performance Standards

Applicable performance standards for activities conducted within this resource area are defined at 310 CMR 10.35(3 through 5). The performance standards at 310 CMR 10.35(6) are not applicable as the project does not include a stream crossing.

Performance Standard 3

Performance Standard 3 states that any project on such land or bank shall not have an adverse effect on the anadromous or catadromous fish run by: (a) impeding or obstructing the migration of the fish, unless DMF has determined that such impeding or obstructing is acceptable,

pursuant to its authority under M.G.L. c. 130, § 19; (b) changing the volume or rate of flow of water within the fish run; or (c) impairing the capacity of spawning or nursery habitats necessary to sustain the various life stages of the fish.

Compliance with Performance Standard 3

As the project is maintenance dredging designed to restore the depth of the berthing area to a depth most recently established in 1994 at 40 feet below mean low water, it will have no adverse effect on migration of the anadromous fish and the volume or rate of flow of water within the river. The proposed use of an environmental bucket dredge to minimize the incidental release of dredged silts during the dredging operation and avoidance of dredging activities during the critical period of anadromous fish activity in the area (i.e., February 15 through July 15) will prevent adverse impacts to any spawning or nursery habitats that are necessary to sustain the various life stages of the fish.

Performance Standard 4

Performance Standard 4 states that unless otherwise allowed by DMF pursuant to M.G.L. c. 130, § 19, dredging, disposal of dredged material or filling in a fish run shall be prohibited between March 15 and June 15 in any year.

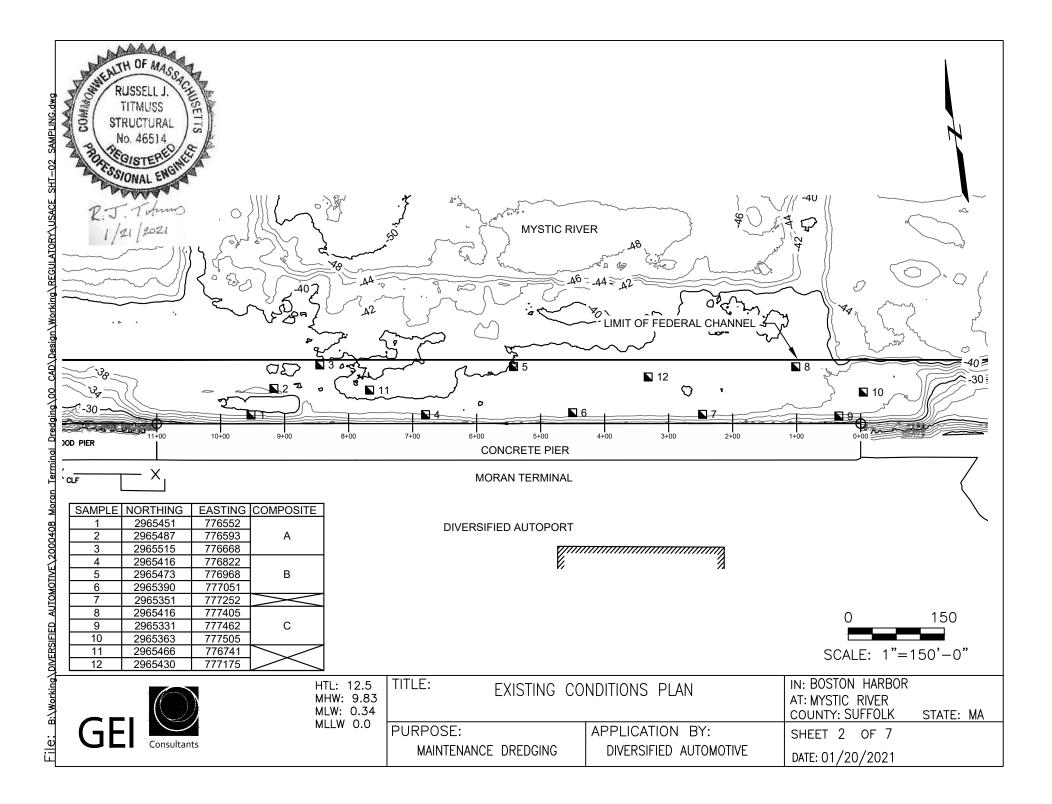
Compliance with Performance Standard 4

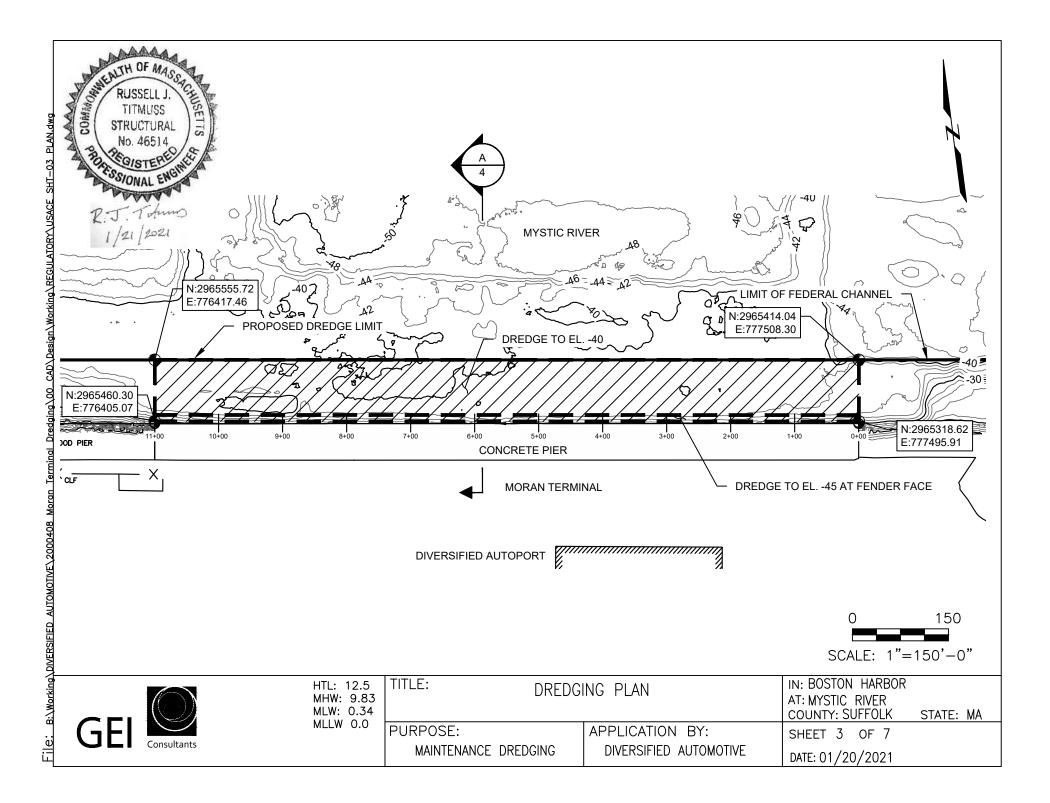
The applicant proposes to avoid dredging and dredged material disposal activities during the critical period of anadromous fish activity in the area (i.e., February 15 through July 15). A copy of the Notice of Intent was forwarded to the Division of Marine Fisheries (DMF) on October 20, 2020 for review and comment. The applicant will comply with any Time of Year (TOY) restriction recommended by the DMF upon completion of that review.

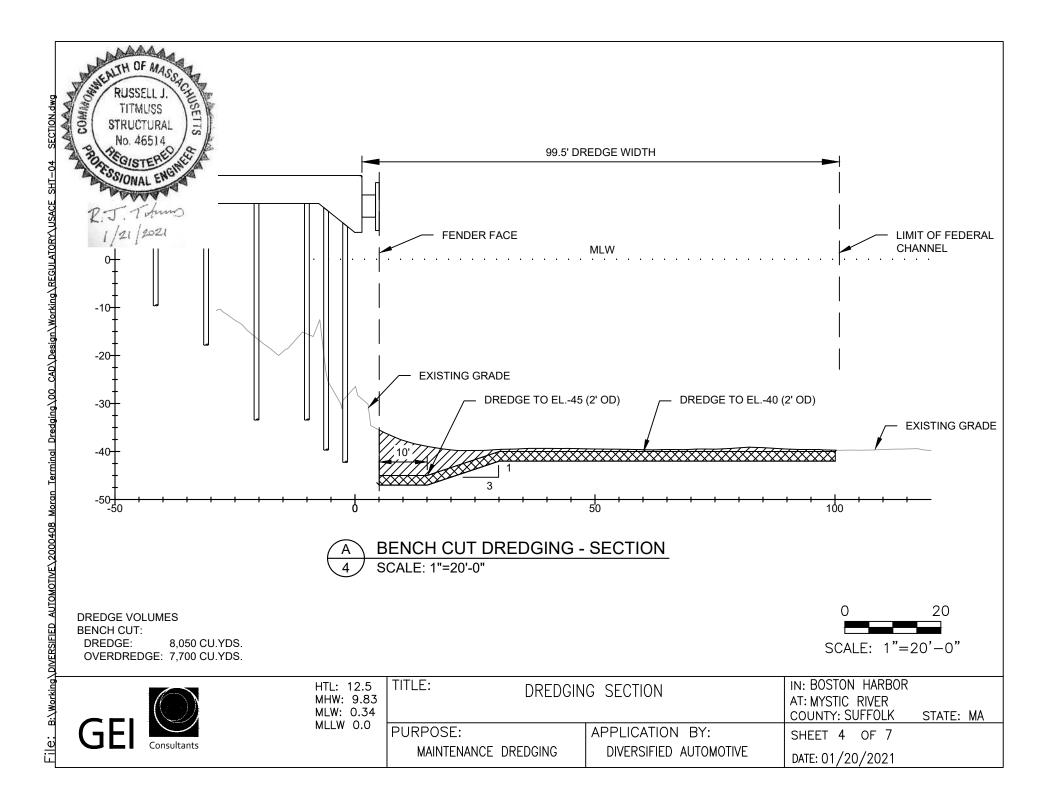
Performance Standard 5

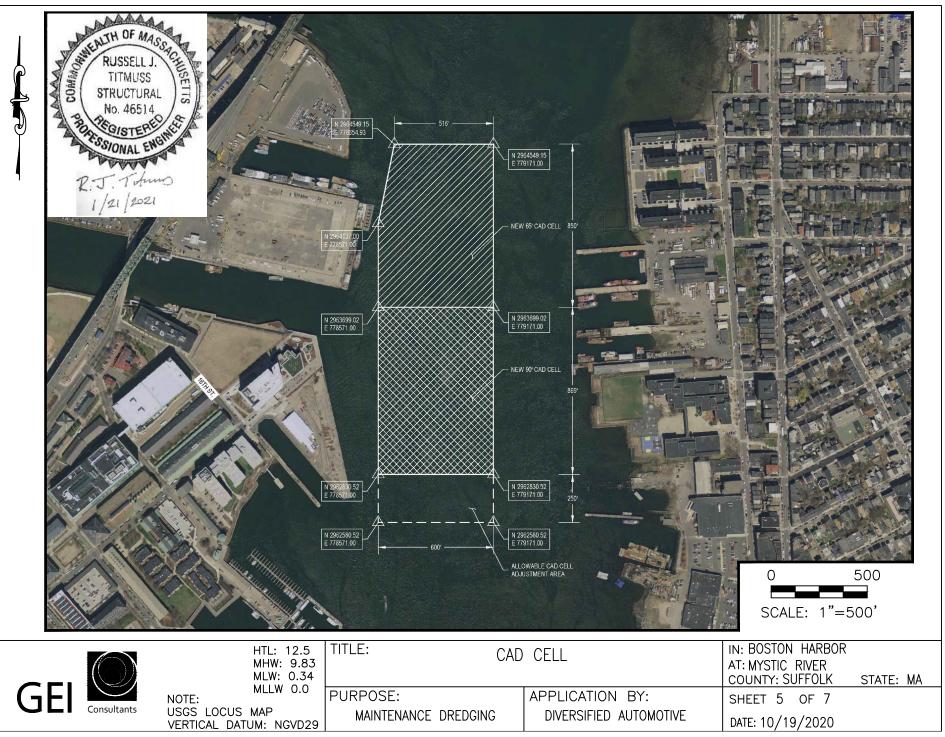
Performance Standard 5 states that notwithstanding the provisions of 310 CMR 10.35(3), no project may be permitted which will have any adverse effect on specified habitat sites of rare vertebrate or invertebrate species, as identified by procedures established under 310 CMR 10.37.

Compliance with Performance Standard 5

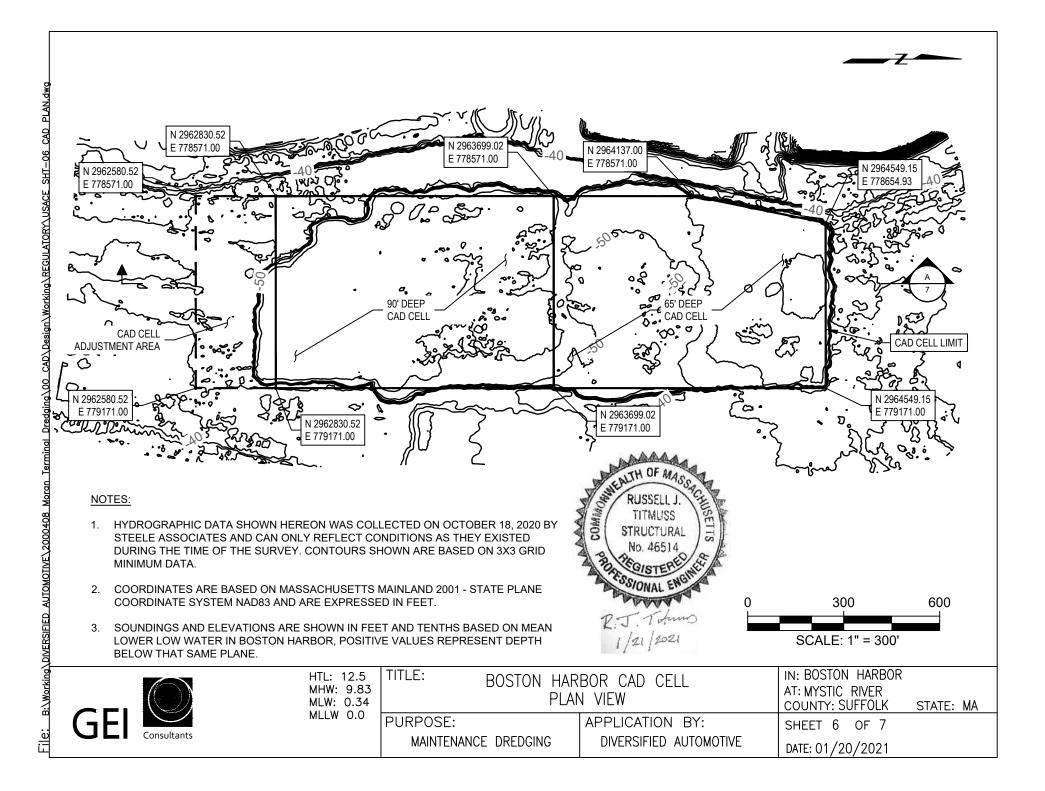

A review of maps prepared by the Massachusetts Natural Heritage and Endangered Species Program (updated August 1, 2017) has revealed that the project area is not recognized as habitat for rare species.

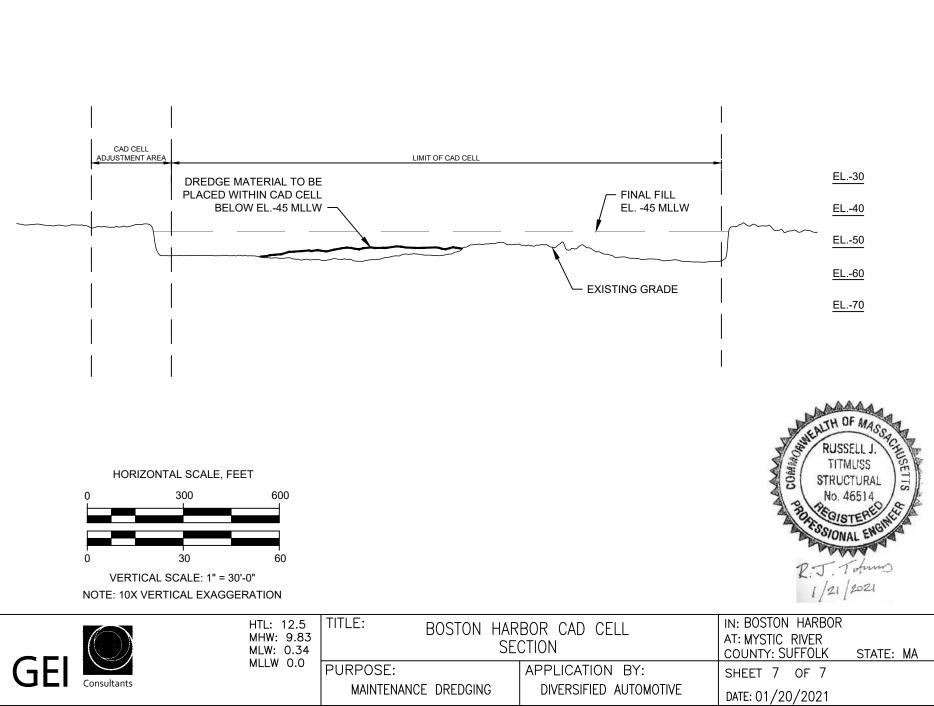

Compliance with Massachusetts Stormwater Standards


The proposed project does not include construction or post-construction activities that generate stormwater runoff. Accordingly, the provisions of 310 CMR 10.05(6)(k) regarding the use of stormwater best practices consistent with the Massachusetts Stormwater Management Standards are not applicable.



PLAN.dwc I OCUS SHT-01 CAD\Design\Working\REGULATORY\USACE Dredging \00 erminal AUTOMOTIVE\2000408 **DIVERSIFIED** File:





AUTOMOTIVE\2000408 Moran Terminal Dredging\00 CAD\Design\Working\REGULATORY\USACE SHT-05 CAD CELL.dwg B:\Working\DIVERSIFIED File:

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands NOI Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

1.

2.

3.

A. Applicant Information

Location of Project:			
100 Terminal Street		Boston	
a. Street Address		b. City/Town	
754545		\$712.50	
c. Check number		d. Fee amount	
Applicant Mailing Ac	ldress:		
John		O'Donnell	
a. First Name		b. Last Name	
Diversified Automot	ive, Inc.		
c. Organization			
100 Terminal Street			
d. Mailing Address			
Boston		MA	02129
e. City/Town		f. State	g. Zip Code
617-936-2108		john.o'donnell@diversified	auto.com
h. Phone Number	i. Fax Number	j. Email Address	
Property Owner (if c	lifferent):		
James		Stolecki	
a. First Name		b. Last Name	
Massport			
c. Organization			
One Harborside Driv	ve, Suite 200		
d. Mailing Address			
East Boston		MA	02128
e. City/Town		f. State	g. Zip Code
617-568-3552		jstolecki@massport.com	

To calculate filing fees, refer to the category fee list and examples in the instructions for filling out WPA Form 3 (Notice of Intent).

B. Fees

h. Phone Number

Fee should be calculated using the following process & worksheet. *Please see Instructions before filling out worksheet.*

j. Email Address

Step 1/Type of Activity: Describe each type of activity that will occur in wetland resource area and buffer zone.

Step 2/Number of Activities: Identify the number of each type of activity.

i. Fax Number

Step 3/Individual Activity Fee: Identify each activity fee from the six project categories listed in the instructions.

Step 4/Subtotal Activity Fee: Multiply the number of activities (identified in Step 2) times the fee per category (identified in Step 3) to reach a subtotal fee amount. Note: If any of these activities are in a Riverfront Area in addition to another Resource Area or the Buffer Zone, the fee per activity should be multiplied by 1.5 and then added to the subtotal amount.

Step 5/Total Project Fee: Determine the total project fee by adding the subtotal amounts from Step 4.

Step 6/Fee Payments: To calculate the state share of the fee, divide the total fee in half and subtract \$12.50. To calculate the city/town share of the fee, divide the total fee in half and add \$12.50.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands NOI Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Fees (continued)

Step 1/Type of Activity	Step 2/Number of Activities	Step 3/Individual Activity Fee	Step 4/Subtotal Activity Fee
Category 4 - Dredging	<u>1</u>	\$1,450	\$1,450
	Step 5/Te	otal Project Fee:	\$1,450
	Step 6/	Fee Payments:	
	Total	Project Fee:	\$1,450 a. Total Fee from Step 5
	State share	of filing Fee:	\$712.50 b. 1/2 Total Fee less \$ 12.50
	City/Town share	e of filling Fee:	\$75.00 c. 1/2 Total Fee plus \$12.50

C. Submittal Requirements

a.) Complete pages 1 and 2 and send with a check or money order for the state share of the fee, payable to the Commonwealth of Massachusetts.

Department of Environmental Protection Box 4062 Boston, MA 02211

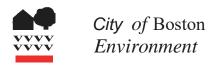
b.) **To the Conservation Commission:** Send the Notice of Intent or Abbreviated Notice of Intent; a **copy** of this form; and the city/town fee payment.

To MassDEP Regional Office (see Instructions): Send a copy of the Notice of Intent or Abbreviated Notice of Intent; a **copy** of this form; and a **copy** of the state fee payment. (E-filers of Notices of Intent may submit these electronically.)

AFFIDAVIT OF SERVICE – ABUTTER NOTIFICATION

Massachusetts Wetlands Protection Act

I, Bradford Saunders, on behalf of Diversified Automotive, hereby certify under the pains and penalties of perjury, that on October 21, 2020, I gave notification to abutters in compliance with the second paragraph of Massachusetts General Laws Chapter 131, Section 40 and 310 CMR 10.05(4)(a) in connection with the following matter.


The filing of a Notice of Intent for the maintenance dredging of the berthing area north of the pier at 100 Terminal Street, Boston, Massachusetts, pursuant to the provisions of the Massachusetts Wetlands Protection Act (M.G.L. c. 131, s. 40), with the conservation commission for the municipality of Boston, Massachusetts.

The form of notification, and a list of the abutters to whom it was given and their addresses, are attached to this Affidavit of Service.

Ed timle

Bradford Saunders

10/21/2020 Date

City of Boston Mayor Martin J. Walsh

NOTIFICATION TO ABUTTERS BOSTON CONSERVATION COMMISSION

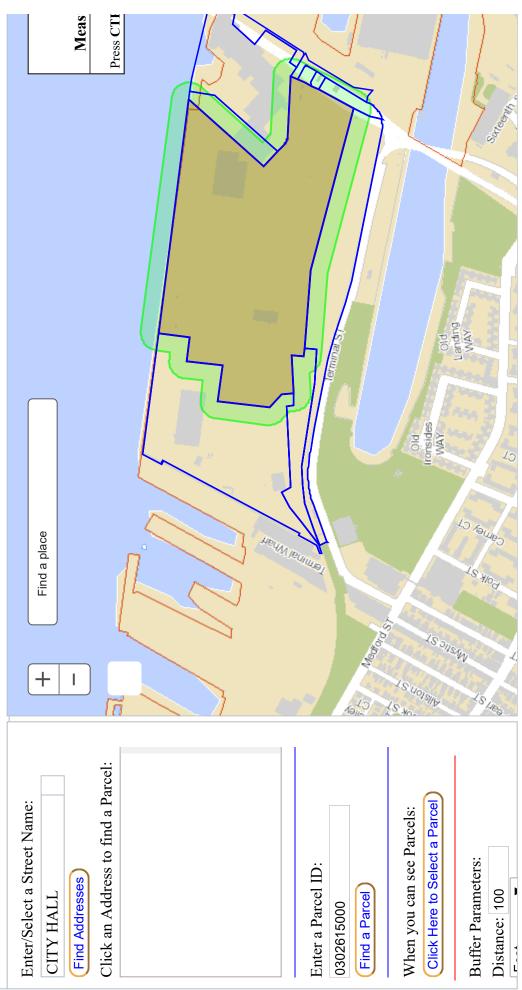
In accordance with the Massachusetts Wetlands Protection Act, Massachusetts General Laws Chapter 131, Section 40, you are hereby notified as an abutter to a project filed with the Boston Conservation Commission.

- A. Diversified Automotive has filed a Notice of Intent with the Boston Conservation Commission seeking permission to alter an Area Subject to Protection under the Wetlands Protection Act (General Laws Chapter 131, section 40).
- B. The address of the lot where the activity is proposed is 100 Terminal Street.
- C. The project involves the maintenance dredging of approximately 15,750 cubic yards from the berthing area of the terminal. All dredged material will be disposed in the Boston CAD cell.
- D. Copies of the notice of Intent may be obtained by contacting the Boston Conservation Commission at CC@boston.gov.
- E. Copies of the Notice of Intent may be obtained from GEI Consultants, Inc. by calling 774-277-6020 between the hours of 8:00 AM and 5:00 PM, Monday through Friday.
- F. In accordance with the Commonwealth of Massachusetts Executive Order Suspending Certain Provisions of the Open Meeting Law, the public hearing will take place **virtually** at https://zoom.us/j/6864582044. If you are unable to access the internet, you can call 1-929-205-6099, enter Meeting ID 686 458 2044 # and use # as your participant ID.
- G. Information regarding the date and time of the public hearing may be obtained from the Boston Conservation Commission by emailing CC@boston.gov or calling (617) 635-3850 between the hours of 9 AM to 5 PM, Monday through Friday.

NOTE: Notice of the public hearing, including its date, time, and place, will be published at least five (5) days in advance in the **Boston Herald**.

NOTE: Notice of the public hearing, including its date, tine, and place, will be posted on www.boston.gov/public-notices and in Boston City Hall not less than forty-eight (48) hours in advance.

NOTE: If you would like to provide comments, you may attend the public hearing or send written comments to CC@boston.gov or Boston City Hall, Environment Department, Room 709, 1 City Hall Square, Boston, MA 02201


NOTE: You also may contact your local Conservation Commission or the Department of Environmental Protection Northeast Regional Office for more information about this application or the Wetlands Protection Act. To contact DEP, call: the Northeast Region: (978) 694-3200.

DIA	OWNER	MLG_ADDRESS	MLG_CITYSTATE ZIPCODE LOC_ADDRESS	ZIPCODE		LOC_CITY ZIPCODE	ZIPCODE
202752002	MASSACHUSETTS PORT AUTHORITY 100 TERMINAL ST	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 TERMINAL ST	CHARLESTOWN	2129
202755000	CHARLESTOWN MARITIME CENTER	30 DAVID G MUGAR WAY	BOSTON MA	2114	2114 200 TERMINAL ST CHARLESTOWN	CHARLESTOWN	2129
202755001	CHARLESTOWN MARITIME CENTER	30 DAVID G MUGAR WAY	BOSTON MA	2114	2114 TERMINAL ST	CHARLESTOWN	2129
202755003	CHARLESTOWN MARITIME CENTER	30 DAVID G MUGAR WAY	BOSTON MA	2114	2114 190 TERMINAL ST CHARLESTOWN	CHARLESTOWN	2129
202755004	MASSACHUSETTS PORT AUTHORITY	ONE HARBORSIDE DR SUITE 200 EAST BOSTON MA	EAST BOSTON MA	2128	2128 TERMINAL ST	CHARLESTOWN	2129
202755017	BOSTON AUTOPORT LLC (LESSEE)	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 TERMINAL ST	CHARLESTOWN	2129
202755005	MASSACHUSETTS PORT AUTHORITY	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 TERMINAL ST	CHARLESTOWN	2129
202755006	MASSACHUSETTS PORT AUTHORITY	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 TERMINAL ST	CHARLESTOWN	2129
202755007	MASSACHUSETTS PORT AUTHORITY	ONE HARBORSIDE DR SUITE 200 EAST BOSTON	EAST BOSTON	2128	2128 TERMINAL ST	CHARLESTOWN	2128
202755019	BOSTON AUTOPORT LLC (LESSEE)	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 TERMINAL ST	CHARLESTOWN	2129
202755015	MASSACHUSETTS PORT AUTHORITY	ONE HARBORSIDE DR SUITE 200 EAST BOSTON MA	EAST BOSTON MA	2128	2128 TERMINAL ST	CHARLESTOWN	2129
202755021	BOSTON AUTOPART LLC (LESSEE)	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 TERMINAL ST	CHARLESTOWN	2129
202756000	MASSACHUSETTS PORT AUTHORITY	1 HARBORSIDE DR #200S	EAST BOSTON MA	2128	2128 TERMINAL ST	CHARLESTOWN	2129
202756003	BOSTON AUTOPORT LLC (LESSEE)	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 TERMINAL ST	CHARLESTOWN	2129
202756001	MASSACHUSETTS PORT AUTHORITY	1 HARBORSIDE DR #200S	EAST BOSTON MA	2128	2128 60 R TERMINAL ST	CHARLESTOWN	2129
202756004	BOSTON AUTOPORT LLC (LESSEE)	100 TERMINAL ST	CHARLESTOWN MA	2129	2129 60R TERMINAL ST	CHARLESTOWN	2129

Abutters who are neither the applicant nor property owner are indicated in RED.

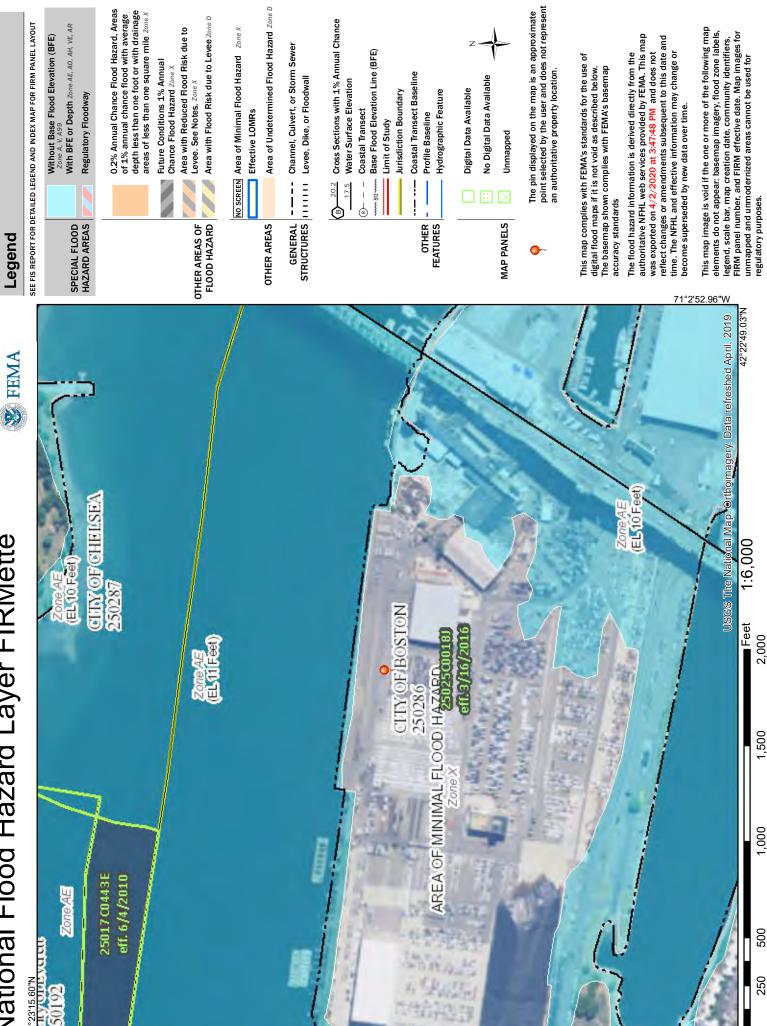
Abutter Mailing List Generator --- City of Boston Assessing Department

Saunders, Bradford

From:	Saunders, Bradford
Sent:	Tuesday, October 20, 2020 4:24 PM
То:	'DMF.EnvReview-North@mass.gov'
Subject:	J.F. Moran Terminal Maintenance Dredging Notice of Intent
Attachments:	NOI - complete (signed).pdf

Attached is a copy of a Notice of Intent filed with the Boston Conservation Commission regarding the proposed maintenance dredging of approximately 15,750 cubic yards of sediment from the berthing area at the J.F. Moran Terminal at the mouth of the Mystic River. This document is being submitted for you review per the requirements of the Massachusetts Wetlands Protection Act and its implementing regulations.

If you have any questions concerning this document, please contact the undersigned.



BRAD SAUNDERS Regulatory Specialist 774.277.6020 cell: 617.921.6435 124 Grove Street, Suite 300, Franklin, MA 02038-3156

National Flood Hazard Layer FIRMette

71°3'30.42"W

250

ATTACHMENT A Sediment Sampling Report

Prepared for: Diversified Automotive Project: Moran Berth Sediment Sampling Location: Mystic River, Charlestown, MA Attention: John O'Donnell Date: September 5, 2020

Steele Associates Marine Consultants, LLC 94 Gifford St. Falmouth, MA 02540 508.540.0001

Subject: Moran Berth Sediment Sampling Report

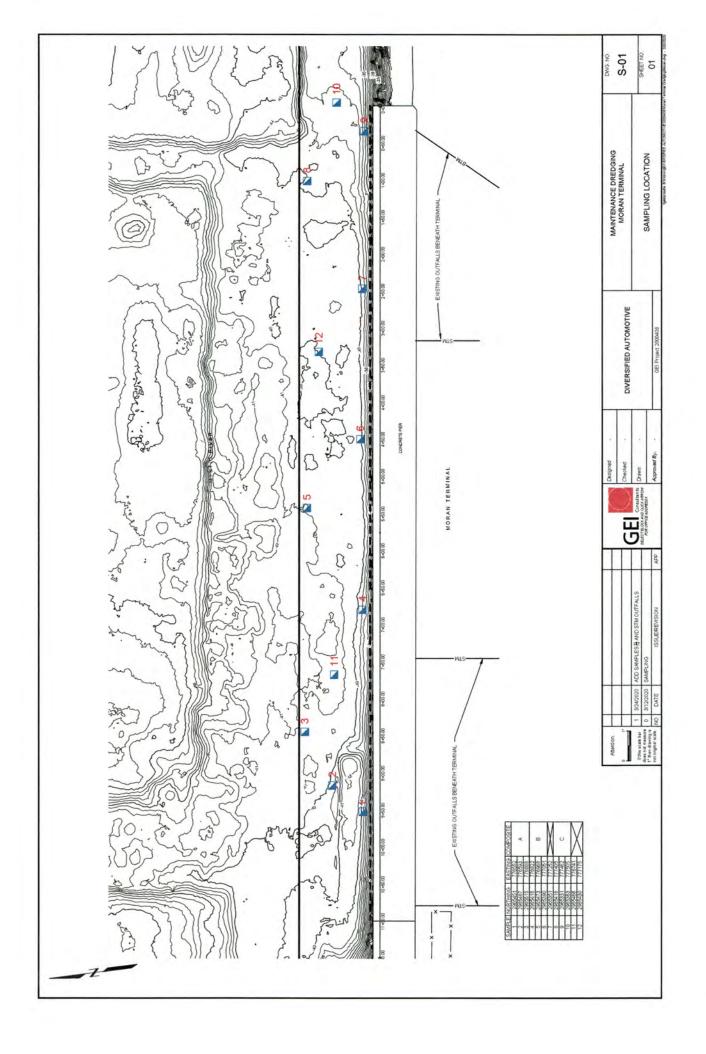
Steele Associates Marine Consultants, LLC (SAMC) performed vibrocore sediment sampling at Boston Autoport's Moran Terminal Berth in Charlestown, MA on July 13, 2020. Twelve sediment cores were targeted at sample locations identified in GEI's sampling plan entitled "Approved Sampling Protocol (complete) – FINAL", which is attached to this report.

The 50-ft vessel Mantis (shown above), outfitted with a deck crane, was used as a sampling platform. A pneumatic vibrocoring system with a 4-inch diameter stainless steel core barrel and cutter-catcher nose cone assembly. Prior to each sediment core collection, the cutter-catcher nose cone was decontaminated, and the tube lined with polyethylene plastic liner. Positioning was achieved using a sub-meter DGPS and heading sensor and Hypack software. A minimum of three attempts were made at each intended location prior to relocating in five-foot intervals until achieving successful penetration. Sample penetration depth, recovery, coordinates, water depth, and tide have been provided for each sediment core sample.

Laboratory analysis was performed by Alpha Analytical's sediment facility located in Mansfield, MA. Samples were provided to Alpha in accordance with the Chain of Custody, and no significant deviations were reported by Alpha. While the bottle order was incomplete at the time of sampling, arrangements were made with Alpha to perform all required analyses using the bottles provided prior to sampling. Alpha Analytical's Report is attached to this summary.

J.F. Moran Terminal Maintenance Dredging – Boston, MA Sediment Sampling Protocol (approved by MA-DEP on 3/12/20 and U.S. Army Corps of Engineers on 5/20/20)

Sampling Program


- 1. Collect twelve (12) vibracore samples in the locations depicted in attached Drawing S-01 dated 3/12/20.
- 2. Vibracores at locations 2, 3, 5, 8, 10, 11, and 12 are to be completed to a depth of -43 feet (MLLW).
- 3. Vibracores at locations 1, 4, 6, 7, and 9 are to be completed to a depth of -48 feet (MLLW).
- 4. Upon collection each core is to be split lengthwise, photographed with a stadia rod for scale, and described in accordance with ASTM D 2488 Standard Practice for Description and Identification of Soils (see attached).
- 5. Field sampling data including date, time, latitude, longitude, GPS accuracy, measured water depth, tidal correction, and core penetration/recovery are to be recorded for each vibracore. All coordinate data are to be reported in geographic NAD 83 decimal degree format. All depth data should be reported in tenths of feet.
- 6. All information generated/collected under 4 and 5 above are to be recorded for each core on the attached Sediment Core Log Sheet.

Sample Analysis and Testing

- 1. For analysis, core samples obtained from sampling locations 1, 2, 3, 4, 5, 6, 8, 9, and 10 are to be composited as follows.
 - Composite A.....Cores 1, 2, and 3
 - Composite B.....Cores 4, 5, and 6
 - Composite C.....Cores 8, 9, and 10
- 2. Core samples obtained from sampling locations 7, 11, and 12 are to be analyzed as distinct non-composited samples.
- 3. Assess grain size distribution of the composited and non-composited samples based on the wet passage of material through U.S. Standard Sieve Nos. 4, 10, 40, 60, and 200.
- 4. Conduct bulk chemistry testing on each composited and non-composited sample as specified at 314 CMR 9.07(2)(b)6 for the following parameters.

Arsenic	Zinc
Cadmium	PAHs
Chromium	PCBs
Copper	Extractable Petroleum Hydrocarbons
Lead	Volatile Organic Compounds *
Mercury	Total Organic Carbon
Nickel	

* Volatile Organic Compounds are to be determined for the noncomposited, samples 7, 11, and 12 only.

PROJECT:	_ DATE:	
SAMPLING PERSONNEL:		
SEA STATE:	WEATHER CODE:	
LOCATION METHOD:		
SAMPLE ID:	SAMPLER TYPE:	
TIME:		
SOUNDING:	CORRECTED DEPTH:	
COORDINATES: N	Е	
PENETRATION/RECOVERY:	NO. OF ATTEMPTS:	
MATERIAL DESCRIPTION:		

Г

CORE PHOTO:	NOTES:
Insert core photograph with scale	Insert field notes and ASTM description of core
I O I	

Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)¹

This standard is issued under the fixed designation D 2488; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope *

1.1 This practice covers procedures for the description of soils for engineering purposes.

1.2 This practice also describes a procedure for identifying soils, at the option of the user, based on the classification system described in Test Method D 2487. The identification is based on visual examination and manual tests. It must be clearly stated in reporting an identification that it is based on visual-manual procedures.

1.2.1 When precise classification of soils for engineering purposes is required, the procedures prescribed in Test Method D 2487 shall be used.

1.2.2 In this practice, the identification portion assigning a group symbol and name is limited to soil particles smaller than 3 in. (75 mm).

1.2.3 The identification portion of this practice is limited to naturally occurring soils (disturbed and undisturbed).

NOTE 1—This practice may be used as a descriptive system applied to such materials as shale, claystone, shells, crushed rock, etc. (see Appendix X2).

1.3 The descriptive information in this practice may be used with other soil classification systems or for materials other than naturally occurring soils.

1.4 The values stated in inch-pound units are to be regarded as the standard.

1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements see Section 8.

1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.

2. Referenced Documents

- 2.1 ASTM Standards:
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids²
- D 1452 Practice for Soil Investigation and Sampling by Auger Borings²
- D 1586 Test Method for Penetration Test and Split-Barrel Sampling of Soils²
- D 1587 Practice for Thin-Walled Tube Sampling of Soils²
- D 2113 Practice for Diamond Core Drilling for Site Investigation²
- D 2487 Classification of Soils for Engineering Purposes (Unified Soil Classification System)²
- D 3740 Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and rock as Used in Engineering Design and Construction³
- D 4083 Practice for Description of Frozen Soils (Visual-Manual Procedure)²

3. Terminology

3.1 *Definitions*—Except as listed below, all definitions are in accordance with Terminology D 653.

NOTE 2—For particles retained on a 3-in. (75-mm) US standard sieve, the following definitions are suggested:

Cobbles—particles of rock that will pass a 12-in. (300-mm) square opening and be retained on a 3-in. (75-mm) sieve, and

Boulders—particles of rock that will not pass a 12-in. (300-mm) square opening.

3.1.1 *clay*—soil passing a No. 200 (75-µm) sieve that can be made to exhibit plasticity (putty-like properties) within a range of water contents, and that exhibits considerable strength when air-dry. For classification, a clay is a fine-grained soil, or the fine-grained portion of a soil, with a plasticity index equal to or greater than 4, and the plot of plasticity index versus liquid

¹ This practice is under the jurisdiction of ASTM Committee D-18 on Soil and Rock and is the direct responsibility of Subcommittee D18.07 on Identification and Classification of Soils.

Current edition approved Feb. 10, 2000. Published May 2000. Originally published as D 2488 – 66 T. Last previous edition D $2488 - 93^{\epsilon_1}$.

² Annual Book of ASTM Standards, Vol 04.08.

³ Annual Book of ASTM Standards, Vol 04.09.

limit falls on or above the "A" line (see Fig. 3 of Test Method D 2487).

3.1.2 *gravel*—particles of rock that will pass a 3-in. (75-mm) sieve and be retained on a No. 4 (4.75-mm) sieve with the following subdivisions:

coarse—passes a 3-in. (75-mm) sieve and is retained on a $\frac{3}{4}$ -in. (19-mm) sieve.

fine—passes a $\frac{3}{4}$ -in. (19-mm) sieve and is retained on a No. 4 (4.75-mm) sieve.

3.1.3 *organic clay*—a clay with sufficient organic content to influence the soil properties. For classification, an organic clay is a soil that would be classified as a clay, except that its liquid limit value after oven drying is less than 75 % of its liquid limit value before oven drying.

3.1.4 *organic silt*—a silt with sufficient organic content to influence the soil properties. For classification, an organic silt is a soil that would be classified as a silt except that its liquid limit value after oven drying is less than 75 % of its liquid limit value before oven drying.

3.1.5 *peat*—a soil composed primarily of vegetable tissue in various stages of decomposition usually with an organic odor, a dark brown to black color, a spongy consistency, and a texture ranging from fibrous to amorphous.

3.1.6 *sand*—particles of rock that will pass a No. 4 (4.75-mm) sieve and be retained on a No. 200 (75- μ m) sieve with the following subdivisions:

coarse—passes a No. 4 (4.75-mm) sieve and is retained on a No. 10 (2.00-mm) sieve.

medium—passes a No. 10 (2.00-mm) sieve and is retained on a No. 40 (425- μ m) sieve.

fine—passes a No. 40 (425- μ m) sieve and is retained on a No. 200 (75- μ m) sieve.

3.1.7 *silt*—soil passing a No. 200 (75-µm) sieve that is nonplastic or very slightly plastic and that exhibits little or no strength when air dry. For classification, a silt is a fine-grained soil, or the fine-grained portion of a soil, with a plasticity index less than 4, or the plot of plasticity index versus liquid limit falls below the "A" line (see Fig. 3 of Test Method D 2487).

4. Summary of Practice

4.1 Using visual examination and simple manual tests, this practice gives standardized criteria and procedures for describing and identifying soils.

4.2 The soil can be given an identification by assigning a group symbol(s) and name. The flow charts, Fig. 1a and Fig. 1b for fine-grained soils, and Fig. 2, for coarse-grained soils, can be used to assign the appropriate group symbol(s) and name. If the soil has properties which do not distinctly place it into a specific group, borderline symbols may be used, see Appendix X3.

NOTE 3—It is suggested that a distinction be made between *dual* symbols and *borderline symbols*.

Dual Symbol—A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC, CL-ML used to indicate that the soil has been identified as having the properties of a classification in accordance with Test Method D 2487 where two symbols are required. Two symbols are required when the soil has between 5 and 12 % fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.

Borderline Symbol—A borderline symbol is two symbols separated by a slash, for example, CL/CH, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that do not distinctly place the soil into a specific group (see Appendix X3).

5. Significance and Use

5.1 The descriptive information required in this practice can be used to describe a soil to aid in the evaluation of its significant properties for engineering use.

5.2 The descriptive information required in this practice should be used to supplement the classification of a soil as determined by Test Method D 2487.

5.3 This practice may be used in identifying soils using the classification group symbols and names as prescribed in Test Method D 2487. Since the names and symbols used in this practice to identify the soils are the same as those used in Test Method D 2487, it shall be clearly stated in reports and all other appropriate documents, that the classification symbol and name are based on visual-manual procedures.

5.4 This practice is to be used not only for identification of soils in the field, but also in the office, laboratory, or wherever soil samples are inspected and described.

5.5 This practice has particular value in grouping similar soil samples so that only a minimum number of laboratory tests need be run for positive soil classification.

NOTE 4—The ability to describe and identify soils correctly is learned more readily under the guidance of experienced personnel, but it may also be acquired systematically by comparing numerical laboratory test results for typical soils of each type with their visual and manual characteristics.

5.6 When describing and identifying soil samples from a given boring, test pit, or group of borings or pits, it is not necessary to follow all of the procedures in this practice for every sample. Soils which appear to be similar can be grouped together; one sample completely described and identified with the others referred to as similar based on performing only a few of the descriptive and identification procedures described in this practice.

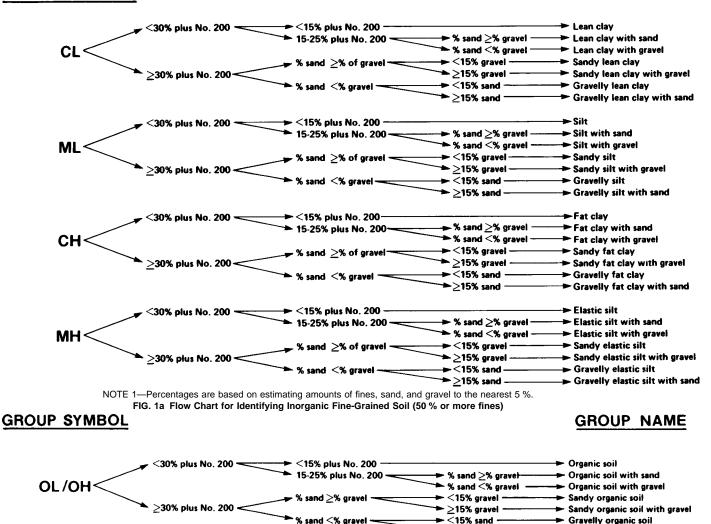
5.7 This practice may be used in combination with Practice D 4083 when working with frozen soils.

NOTE 5—Notwithstanding the statements on precision and bias contained in this standard: The precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D 3740 does not in itself assure reliable testing. Reliable testing depends on several factors; Practice D 3740 provides a means for evaluating some of those factors.

6. Apparatus

- 6.1 Required Apparatus:
- 6.1.1 Pocket Knife or Small Spatula.
- 6.2 Useful Auxiliary Apparatus:
- 6.2.1 Small Test Tube and Stopper (or jar with a lid).
- 6.2.2 Small Hand Lens.

7. Reagents


7.1 *Purity of Water*—Unless otherwise indicated, references to water shall be understood to mean water from a city water

御)D 2488

GROUP NAME

Gravelly organic soil with sand

GROUP SYMBOL

NOTE 1-Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 %.

supply or natural source, including non-potable water.

7.2 *Hydrochloric Acid*—A small bottle of dilute hydrochloric acid, HCl, one part HCl (10 N) to three parts water (This reagent is optional for use with this practice). See Section 8.

8. Safety Precautions

8.1 When preparing the dilute HCl solution of one part concentrated hydrochloric acid (10 N) to three parts of distilled water, slowly add acid into water following necessary safety precautions. Handle with caution and store safely. If solution comes into contact with the skin, rinse thoroughly with water.

8.2 Caution—Do not add water to acid.

9. Sampling

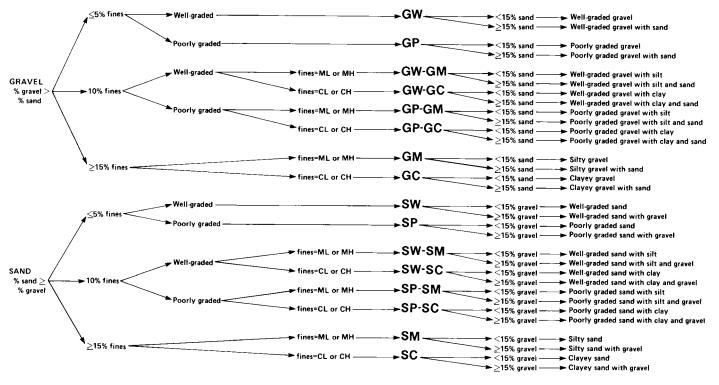
9.1 The sample shall be considered to be representative of the stratum from which it was obtained by an appropriate, accepted, or standard procedure.

Note 6-Preferably, the sampling procedure should be identified as

having been conducted in accordance with Practices D 1452, D 1587, or D 2113, or Test Method D 1586.

► ≥15% sand

9.2 The sample shall be carefully identified as to origin.


NOTE 7—Remarks as to the origin may take the form of a boring number and sample number in conjunction with a job number, a geologic stratum, a pedologic horizon or a location description with respect to a permanent monument, a grid system or a station number and offset with respect to a stated centerline and a depth or elevation.

9.3 For accurate description and identification, the minimum amount of the specimen to be examined shall be in accordance with the following schedule:

Minimum Specimen Size, Dry Weight
100 g (0.25 lb)
200 g (0.5 lb)
1.0 kg (2.2 lb)
8.0 kg (18 lb)
60.0 kg (132 lb)

GROUP SYMBOL

GROUP NAME

Note 1—Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 %. FIG. 2 Flow Chart for Identifying Coarse-Grained Soils (less than 50 % fines)

NOTE 8—If random isolated particles are encountered that are significantly larger than the particles in the soil matrix, the soil matrix can be accurately described and identified in accordance with the preceeding schedule.

9.4 If the field sample or specimen being examined is smaller than the minimum recommended amount, the report shall include an appropriate remark.

10. Descriptive Information for Soils

10.1 Angularity—Describe the angularity of the sand (coarse sizes only), gravel, cobbles, and boulders, as angular, subangular, subrounded, or rounded in accordance with the criteria in Table 1 and Fig. 3. A range of angularity may be stated, such as: subrounded to rounded.

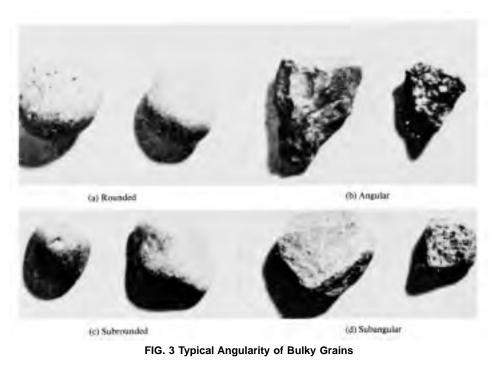
10.2 *Shape*—Describe the shape of the gravel, cobbles, and boulders as flat, elongated, or flat and elongated if they meet the criteria in Table 2 and Fig. 4. Otherwise, do not mention the shape. Indicate the fraction of the particles that have the shape, such as: one-third of the gravel particles are flat.

 TABLE 1 Criteria for Describing Angularity of Coarse-Grained Particles (see Fig. 3)

Description	Criteria
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces
Subangular	Particles are similar to angular description but have rounded edges
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges
Rounded	Particles have smoothly curved sides and no edges

10.3 *Color*—Describe the color. Color is an important property in identifying organic soils, and within a given locality it may also be useful in identifying materials of similar geologic origin. If the sample contains layers or patches of varying colors, this shall be noted and all representative colors shall be described. The color shall be described for moist samples. If the color represents a dry condition, this shall be stated in the report.

10.4 *Odor*—Describe the odor if organic or unusual. Soils containing a significant amount of organic material usually have a distinctive odor of decaying vegetation. This is especially apparent in fresh samples, but if the samples are dried, the odor may often be revived by heating a moistened sample. If the odor is unusual (petroleum product, chemical, and the like), it shall be described.


10.5 *Moisture Condition*—Describe the moisture condition as dry, moist, or wet, in accordance with the criteria in Table 3.

10.6 *HCl Reaction*—Describe the reaction with HCl as none, weak, or strong, in accordance with the critera in Table 4. Since calcium carbonate is a common cementing agent, a report of its presence on the basis of the reaction with dilute hydrochloric acid is important.

10.7 *Consistency*—For intact fine-grained soil, describe the consistency as very soft, soft, firm, hard, or very hard, in accordance with the criteria in Table 5. This observation is inappropriate for soils with significant amounts of gravel.

10.8 *Cementation*—Describe the cementation of intact coarse-grained soils as weak, moderate, or strong, in accordance with the criteria in Table 6.

- ∰) D 2488

TABLE 2 Criteria for Describing Particle Shape (see Fig. 4)

The particle shape shall be described as follows where length, width, and thickness refer to the greatest, intermediate, and least dimensions of a particle, respectively.

Flat	Particles with width/thickness > 3
Elongated	Particles with length/width > 3
Flat and elongated	Particles meet criteria for both flat and elongated

10.9 *Structure*—Describe the structure of intact soils in accordance with the criteria in Table 7.

10.10 *Range of Particle Sizes*—For gravel and sand components, describe the range of particle sizes within each component as defined in 3.1.2 and 3.1.6. For example, about 20 % fine to coarse gravel, about 40 % fine to coarse sand.

10.11 *Maximum Particle Size*—Describe the maximum particle size found in the sample in accordance with the following information:

10.11.1 *Sand Size*—If the maximum particle size is a sand size, describe as fine, medium, or coarse as defined in 3.1.6. For example: maximum particle size, medium sand.

10.11.2 *Gravel Size*—If the maximum particle size is a gravel size, describe the maximum particle size as the smallest sieve opening that the particle will pass. For example, maximum particle size, $1\frac{1}{2}$ in. (will pass a $1\frac{1}{2}$ -in. square opening but not a $\frac{3}{4}$ -in. square opening).

10.11.3 *Cobble or Boulder Size*—If the maximum particle size is a cobble or boulder size, describe the maximum dimension of the largest particle. For example: maximum dimension, 18 in. (450 mm).

10.12 *Hardness*—Describe the hardness of coarse sand and larger particles as hard, or state what happens when the particles are hit by a hammer, for example, gravel-size particles fracture with considerable hammer blow, some gravel-size particles crumble with hammer blow. "Hard" means particles do not crack, fracture, or crumble under a hammer blow.

PARTICLE SHAPE W=WIDTH T=THICKNESS L=LENGTH PDRTICE

FLAT: W/T > 3 ELONGATED: L/W > 3 FLAT AND ELONGATED: - meets both criteria

FIG. 4 Criteria for Particle Shape

10.13 Additional comments shall be noted, such as the presence of roots or root holes, difficulty in drilling or augering

TABLE 3 Criteria for Describing Moisture Condition

Description	Criteria
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually soil is below water table

TABLE 4 Criteria for Describing the Reaction With HCI

Description	Criteria
None	No visible reaction
Weak	Some reaction, with bubbles forming slowly
Strong	Violent reaction, with bubbles forming immediately

TABLE 5 Criteria for Describing Dilatancy

Description	Criteria
Very soft	Thumb will penetrate soil more than 1 in. (25 mm)
Soft	Thumb will penetrate soil about 1 in. (25 mm)
Firm	Thumb will indent soil about 1/4in. (6 mm)
Hard	Thumb will not indent soil but readily indented with thumbnail
Very hard	Thumbnail will not indent soil

TABLE 6 Criteria for Describing Toughness

Description	Criteria
Weak	Crumbles or breaks with handling or little finger pressure
Moderate	Crumbles or breaks with considerable finger pressure
Strong	Will not crumble or break with finger pressure

TABLE 7 Criteria for Describing Dilatancy

Description	Criteria
Stratified	Alternating layers of varying material or color with layers at least 6 mm thick; note thickness
Laminated	Alternating layers of varying material or color with the layers less than 6 mm thick; note thickness
Fissured	Breaks along definite planes of fracture with little resistance to fracturing
Slickensided	Fracture planes appear polished or glossy, sometimes striated
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay; note thickness
Homogeneous	Same color and appearance throughout

hole, caving of trench or hole, or the presence of mica.

10.14 A local or commercial name or a geologic interpretation of the soil, or both, may be added if identified as such.

10.15 A classification or identification of the soil in accordance with other classification systems may be added if identified as such.

11. Identification of Peat

11.1 A sample composed primarily of vegetable tissue in various stages of decomposition that has a fibrous to amorphous texture, usually a dark brown to black color, and an organic odor, shall be designated as a highly organic soil and shall be identified as peat, PT, and not subjected to the identification procedures described hereafter.

12. Preparation for Identification

12.1 The soil identification portion of this practice is based

on the portion of the soil sample that will pass a 3-in. (75-mm) sieve. The larger than 3-in. (75-mm) particles must be removed, manually, for a loose sample, or mentally, for an intact sample before classifying the soil.

12.2 Estimate and note the percentage of cobbles and the percentage of boulders. Performed visually, these estimates will be on the basis of volume percentage.

NOTE 9—Since the percentages of the particle-size distribution in Test Method D 2487 are by dry weight, and the estimates of percentages for gravel, sand, and fines in this practice are by dry weight, it is recommended that the report state that the percentages of cobbles and boulders are by volume.

12.3 Of the fraction of the soil smaller than 3 in. (75 mm), estimate and note the percentage, by dry weight, of the gravel, sand, and fines (see Appendix X4 for suggested procedures).

NOTE 10—Since the particle-size components appear visually on the basis of volume, considerable experience is required to estimate the percentages on the basis of dry weight. Frequent comparisons with laboratory particle-size analyses should be made.

12.3.1 The percentages shall be estimated to the closest 5 %. The percentages of gravel, sand, and fines must add up to 100 %.

12.3.2 If one of the components is present but not in sufficient quantity to be considered 5 % of the smaller than 3-in. (75-mm) portion, indicate its presence by the term *trace*, for example, trace of fines. A trace is not to be considered in the total of 100 % for the components.

13. Preliminary Identification

13.1 The soil is *fine grained* if it contains 50 % or more fines. Follow the procedures for identifying fine-grained soils of Section 14.

13.2 The soil is *coarse grained* if it contains less than 50 % fines. Follow the procedures for identifying coarse-grained soils of Section 15.

14. Procedure for Identifying Fine-Grained Soils

14.1 Select a representative sample of the material for examination. Remove particles larger than the No. 40 sieve (medium sand and larger) until a specimen equivalent to about a handful of material is available. Use this specimen for performing the dry strength, dilatancy, and toughness tests.

14.2 Dry Strength:

14.2.1 From the specimen, select enough material to mold into a ball about 1 in. (25 mm) in diameter. Mold the material until it has the consistency of putty, adding water if necessary.

14.2.2 From the molded material, make at least three test specimens. A test specimen shall be a ball of material about $\frac{1}{2}$ in. (12 mm) in diameter. Allow the test specimens to dry in air, or sun, or by artificial means, as long as the temperature does not exceed 60°C.

14.2.3 If the test specimen contains natural dry lumps, those that are about $\frac{1}{2}$ in. (12 mm) in diameter may be used in place of the molded balls.

NOTE 11—The process of molding and drying usually produces higher strengths than are found in natural dry lumps of soil.

14.2.4 Test the strength of the dry balls or lumps by crushing between the fingers. Note the strength as none, low,

medium, high, or very high in accorance with the criteria in Table 8. If natural dry lumps are used, do not use the results of any of the lumps that are found to contain particles of coarse sand.

14.2.5 The presence of high-strength water-soluble cementing materials, such as calcium carbonate, may cause exceptionally high dry strengths. The presence of calcium carbonate can usually be detected from the intensity of the reaction with dilute hydrochloric acid (see 10.6).

14.3 Dilatancy:

14.3.1 From the specimen, select enough material to mold into a ball about $\frac{1}{2}$ in. (12 mm) in diameter. Mold the material, adding water if necessary, until it has a soft, but not sticky, consistency.

14.3.2 Smooth the soil ball in the palm of one hand with the blade of a knife or small spatula. Shake horizontally, striking the side of the hand vigorously against the other hand several times. Note the reaction of water appearing on the surface of the soil. Squeeze the sample by closing the hand or pinching the soil between the fingers, and note the reaction as none, slow, or rapid in accordance with the criteria in Table 9. The reaction is the speed with which water appears while shaking, and disappears while squeezing.

14.4 Toughness:

14.4.1 Following the completion of the dilatancy test, the test specimen is shaped into an elongated pat and rolled by hand on a smooth surface or between the palms into a thread about $\frac{1}{8}$ in. (3 mm) in diameter. (If the sample is too wet to roll easily, it should be spread into a thin layer and allowed to lose some water by evaporation.) Fold the sample threads and reroll repeatedly until the thread crumbles at a diameter of about $\frac{1}{8}$ in. The thread will crumble at a diameter of $\frac{1}{8}$ in. when the soil is near the plastic limit. Note the pressure required to roll the thread near the plastic limit. Also, note the strength of the thread. After the thread crumbles, the pieces should be lumped together and kneaded until the lump crumbles. Note the toughness of the material during kneading.

14.4.2 Describe the toughness of the thread and lump as low, medium, or high in accordance with the criteria in Table 10.

14.5 *Plasticity*—On the basis of observations made during the toughness test, describe the plasticity of the material in accordance with the criteria given in Table 11.

14.6 Decide whether the soil is an *inorganic* or an *organic* fine-grained soil (see 14.8). If inorganic, follow the steps given in 14.7.

TABLE 8 Criteria for Describing Toughness

Description	Criteria
None	The dry specimen crumbles into powder with mere pressure of handling
Low	The dry specimen crumbles into powder with some finger pressure
Medium	The dry specimen breaks into pieces or crumbles with considerable finger pressure
High	The dry specimen cannot be broken with finger pressure. Specimen will break into pieces between thumb and a hard surface
Very high	The dry specimen cannot be broken between the thumb and a hard surface

TABLE 9 Criteria for Describing Dilatancy

Description	Criteria
None	No visible change in the specimen
Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upor squeezing
Rapid	Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing

TABLE 10 Criteria for Describing Toughness

Description	Criteria
Low	Only slight pressure is required to roll the thread near the plastic limit. The thread and the lump are weak and soft
Medium	Medium pressure is required to roll the thread to near the plastic limit. The thread and the lump have medium stiffness
High	Considerable pressure is required to roll the thread to near the plastic limit. The thread and the lump have very high stiffness

TABLE 11 Criteria for Describing Plasticity

Description	Criteria
Nonplastic	A 1/8-in. (3-mm) thread cannot be rolled at any water content
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit

14.7 Identification of Inorganic Fine-Grained Soils:

14.7.1 Identify the soil as a *lean clay*, CL, if the soil has medium to high dry strength, no or slow dilatancy, and medium toughness and plasticity (see Table 12).

14.7.2 Identify the soil as a *fat clay*, CH, if the soil has high to very high dry strength, no dilatancy, and high toughness and plasticity (see Table 12).

14.7.3 Identify the soil as a *silt*, ML, if the soil has no to low dry strength, slow to rapid dilatancy, and low toughness and plasticity, or is nonplastic (see Table 12).

14.7.4 Identify the soil as an *elastic silt*, MH, if the soil has low to medium dry strength, no to slow dilatancy, and low to medium toughness and plasticity (see Table 12).

NOTE 12—These properties are similar to those for a lean clay. However, the silt will dry quickly on the hand and have a smooth, silky feel when dry. Some soils that would classify as MH in accordance with the criteria in Test Method D 2487 are visually difficult to distinguish from lean clays, CL. It may be necessary to perform laboratory testing for proper identification.

TABLE 12 Identification of Inorganic Fine-Grained Soils from Manual Tests

Soil Symbol	Dry Strength	Dilatancy	Toughness
ML	None to low	Slow to rapid	Low or thread cannot be formed
CL	Medium to high	None to slow	Medium
MH	Low to medium	None to slow	Low to medium
CH	High to very high	None	High

14.8 Identification of Organic Fine-Grained Soils:

14.8.1 Identify the soil as an *organic soil*, OL/OH, if the soil contains enough organic particles to influence the soil properties. Organic soils usually have a dark brown to black color and may have an organic odor. Often, organic soils will change color, for example, black to brown, when exposed to the air. Some organic soils will lighten in color significantly when air dried. Organic soils normally will not have a high toughness or plasticity. The thread for the toughness test will be spongy.

NOTE 13—In some cases, through practice and experience, it may be possible to further identify the organic soils as organic silts or organic clays, OL or OH. Correlations between the dilatancy, dry strength, toughness tests, and laboratory tests can be made to identify organic soils in certain deposits of similar materials of known geologic origin.

14.9 If the soil is estimated to have 15 to 25 % sand or gravel, or both, the words "with sand" or "with gravel" (whichever is more predominant) shall be added to the group name. For example: "lean clay with sand, CL" or "silt with gravel, ML" (see Fig. 1a and Fig. 1b). If the percentage of sand is equal to the percentage of gravel, use "with sand."

14.10 If the soil is estimated to have 30 % or more sand or gravel, or both, the words "sandy" or "gravelly" shall be added to the group name. Add the word "sandy" if there appears to be more sand than gravel. Add the word "gravelly" if there appears to be more gravel than sand. For example: "sandy lean clay, CL", "gravelly fat clay, CH", or "sandy silt, ML" (see Fig. 1a and Fig. 1b). If the percentage of sand is equal to the percent of gravel, use "sandy."

15. Procedure for Identifying Coarse-Grained Soils

(Contains less than 50 % fines)

15.1 The soil is a *gravel* if the percentage of gravel is estimated to be more than the percentage of sand.

15.2 The soil is a *sand* if the percentage of gravel is estimated to be equal to or less than the percentage of sand.

15.3 The soil is a *clean gravel* or *clean sand* if the percentage of fines is estimated to be 5 % or less.

15.3.1 Identify the soil as a *well-graded gravel*, GW, or as a *well-graded sand*, SW, if it has a wide range of particle sizes and substantial amounts of the intermediate particle sizes.

15.3.2 Identify the soil as a *poorly graded gravel*, GP, or as a *poorly graded sand*, SP, if it consists predominantly of one size (uniformly graded), or it has a wide range of sizes with some intermediate sizes obviously missing (gap or skip graded).

15.4 The soil is either a *gravel with fines* or a *sand with fines* if the percentage of fines is estimated to be 15 % or more.

15.4.1 Identify the soil as a *clayey gravel*, GC, or a *clayey sand*, SC, if the fines are clayey as determined by the procedures in Section 14.

15.4.2 Identify the soil as a *silty gravel*, GM, or a *silty sand*, SM, if the fines are silty as determined by the procedures in Section 14.

15.5 If the soil is estimated to contain 10 % fines, give the soil a dual identification using two group symbols.

15.5.1 The first group symbol shall correspond to a clean gravel or sand (GW, GP, SW, SP) and the second symbol shall correspond to a gravel or sand with fines (GC, GM, SC, SM).

15.5.2 The group name shall correspond to the first group

symbol plus the words "with clay" or "with silt" to indicate the plasticity characteristics of the fines. For example: "well-graded gravel with clay, GW-GC" or "poorly graded sand with silt, SP-SM" (see Fig. 2).

15.6 If the specimen is predominantly sand or gravel but contains an estimated 15 % or more of the other coarse-grained constituent, the words "with gravel" or "with sand" shall be added to the group name. For example: "poorly graded gravel with sand, GP" or "clayey sand with gravel, SC" (see Fig. 2).

15.7 If the field sample contains any cobbles or boulders, or both, the words "with cobbles" or "with cobbles and boulders" shall be added to the group name. For example: "silty gravel with cobbles, GM."

16. Report

16.1 The report shall include the information as to origin, and the items indicated in Table 13.

NOTE 14—*Example: Clayey Gravel with Sand and Cobbles, GC*— About 50 % fine to coarse, subrounded to subangular gravel; about 30 % fine to coarse, subrounded sand; about 20 % fines with medium plasticity, high dry strength, no dilatancy, medium toughness; weak reaction with HCl; original field sample had about 5 % (by volume) subrounded cobbles, maximum dimension, 150 mm.

In-Place Conditions-Firm, homogeneous, dry, brown

Geologic Interpretation—Alluvial fan

NOTE 15—Other examples of soil descriptions and identification are given in Appendix X1 and Appendix X2.

NOTE 16—If desired, the percentages of gravel, sand, and fines may be stated in terms indicating a range of percentages, as follows:

Trace—Particles are present but estimated to be less than 5 %

Few-5 to 10 %

Little—15 to 25 %

Some-30 to 45 %

Mostly-50 to 100 %

TABLE 13 Checklist for Description of Soils

1. Group name

- Group symbol
 Percent of cobbles or boulders, or both (by volume)
- 4. Percent of gravel, sand, or fines, or all three (by dry weight)
- Percent of gravel, sand, of lines, of all three (by dry weight)
 Particle-size range:

Gravel-fine, coarse

- Sand-fine, medium, coarse
- 6. Particle angularity: angular, subangular, subrounded, rounded
- 7. Particle shape: (if appropriate) flat, elongated, flat and elongated
- 8. Maximum particle size or dimension
- 9. Hardness of coarse sand and larger particles
- 10. Plasticity of fines: nonplastic, low, medium, high
- 11. Dry strength: none, low, medium, high, very high
- 12. Dilatancy: none, slow, rapid
- 13. Toughness: low, medium, high
- 14. Color (in moist condition)
- 15. Odor (mention only if organic or unusual)
- 16. Moisture: dry, moist, wet
- 17. Reaction with HCI: none, weak, strong
- For intact samples:
- 18. Consistency (fine-grained soils only): very soft, soft, firm, hard, very hard
- Structure: stratified, laminated, fissured, slickensided, lensed, homogeneous
- 20. Cementation: weak, moderate, strong
- 21. Local name
- 22. Geologic interpretation
- 23. Additional comments: presence of roots or root holes, presence of mica, gypsum, etc., surface coatings on coarse-grained particles, caving or sloughing of auger hole or trench sides, difficulty in augering or excavating, etc.

16.2 If, in the soil description, the soil is identified using a classification group symbol and name as described in Test Method D 2487, it must be distinctly and clearly stated in log forms, summary tables, reports, and the like, that the symbol and name are based on visual-manual procedures.

17. Precision and Bias

17.1 This practice provides qualitative information only,

therefore, a precision and bias statement is not applicable.

18. Keywords

18.1 classification; clay; gravel; organic soils; sand; silt; soil classification; soil description; visual classification

APPENDIXES

(Nonmandatory Information)

X1. EXAMPLES OF VISUAL SOIL DESCRIPTIONS

X1.1 The following examples show how the information required in 16.1 can be reported. The information that is included in descriptions should be based on individual circumstances and need.

X1.1.1 *Well-Graded Gravel with Sand (GW)*—About 75 % fine to coarse, hard, subangular gravel; about 25 % fine to coarse, hard, subangular sand; trace of fines; maximum size, 75 mm, brown, dry; no reaction with HCl.

X1.1.2 Silty Sand with Gravel (SM)—About 60 % predominantly fine sand; about 25 % silty fines with low plasticity, low dry strength, rapid dilatancy, and low toughness; about 15 % fine, hard, subrounded gravel, a few gravel-size particles fractured with hammer blow; maximum size, 25 mm; no reaction with HCl (Note—Field sample size smaller than recommended).

In-Place Conditions—Firm, stratified and contains lenses of silt 1 to 2 in. (25 to 50 mm) thick, moist, brown to gray; in-place density 106 lb/ft^3 ; in-place moisture 9 %.

X1.1.3 Organic Soil (OL/OH)—About 100 % fines with low plasticity, slow dilatancy, low dry strength, and low toughness; wet, dark brown, organic odor; weak reaction with HCl.

X1.1.4 Silty Sand with Organic Fines (SM)—About 75 % fine to coarse, hard, subangular reddish sand; about 25 % organic and silty dark brown nonplastic fines with no dry strength and slow dilatancy; wet; maximum size, coarse sand; weak reaction with HCl.

X1.1.5 Poorly Graded Gravel with Silt, Sand, Cobbles and Boulders (GP-GM)—About 75 % fine to coarse, hard, subrounded to subangular gravel; about 15 % fine, hard, subrounded to subangular sand; about 10 % silty nonplastic fines; moist, brown; no reaction with HCl; original field sample had about 5 % (by volume) hard, subrounded cobbles and a trace of hard, subrounded boulders, with a maximum dimension of 18 in. (450 mm).

X2. USING THE IDENTIFICATION PROCEDURE AS A DESCRIPTIVE SYSTEM FOR SHALE, CLAYSTONE, SHELLS, SLAG, CRUSHED ROCK, AND THE LIKE

X2.1 The identification procedure may be used as a descriptive system applied to materials that exist in-situ as shale, claystone, sandstone, siltstone, mudstone, etc., but convert to soils after field or laboratory processing (crushing, slaking, and the like).

X2.2 Materials such as shells, crushed rock, slag, and the like, should be identified as such. However, the procedures used in this practice for describing the particle size and plasticity characteristics may be used in the description of the material. If desired, an identification using a group name and symbol according to this practice may be assigned to aid in describing the material.

X2.3 The group symbol(s) and group names should be placed in quotation marks or noted with some type of distinguishing symbol. See examples.

X2.4 Examples of how group names and symbols can be incororated into a descriptive system for materials that are not

naturally occurring soils are as follows:

X2.4.1 *Shale Chunks*—Retrieved as 2 to 4-in. (50 to 100mm) pieces of shale from power auger hole, dry, brown, no reaction with HCl. After slaking in water for 24 h, material identified as "Sandy Lean Clay (CL)"; about 60 % fines with medium plasticity, high dry strength, no dilatancy, and medium toughness; about 35 % fine to medium, hard sand; about 5 % gravel-size pieces of shale.

X2.4.2 *Crushed Sandstone*—Product of commercial crushing operation; "Poorly Graded Sand with Silt (SP-SM)"; about 90 % fine to medium sand; about 10 % nonplastic fines; dry, reddish-brown, strong reaction with HCl.

X2.4.3 *Broken Shells*—About 60 % gravel-size broken shells; about 30 % sand and sand-size shell pieces; about 10 % fines; "Poorly Graded Gravel with Sand (GP)."

X2.4.4 *Crushed Rock*—Processed from gravel and cobbles in Pit No. 7; "Poorly Graded Gravel (GP)"; about 90 % fine, hard, angular gravel-size particles; about 10 % coarse, hard, angular sand-size particles; dry, tan; no reaction with HCl.

X3. SUGGESTED PROCEDURE FOR USING A BORDERLINE SYMBOL FOR SOILS WITH TWO POSSIBLE IDENTIFICATIONS.

X3.1 Since this practice is based on estimates of particle size distribution and plasticity characteristics, it may be difficult to clearly identify the soil as belonging to one category. To indicate that the soil may fall into one of two possible basic groups, a borderline symbol may be used with the two symbols separated by a slash. For example: SC/CL or CL/CH.

X3.1.1 A borderline symbol may be used when the percentage of fines is estimated to be between 45 and 55 %. One symbol should be for a coarse-grained soil with fines and the other for a fine-grained soil. For example: GM/ML or CL/SC.

X3.1.2 A borderline symbol may be used when the percentage of sand and the percentage of gravel are estimated to be about the same. For example: GP/SP, SC/GC, GM/SM. It is practically impossible to have a soil that would have a borderline symbol of GW/SW.

X3.1.3 A borderline symbol may be used when the soil could be either well graded or poorly graded. For example: GW/GP, SW/SP.

X3.1.4 A borderline symbol may be used when the soil could either be a silt or a clay. For example: CL/ML, CH/MH, SC/SM.

X3.1.5 A borderline symbol may be used when a finegrained soil has properties that indicate that it is at the boundary between a soil of low compressibility and a soil of high compressibility. For example: CL/CH, MH/ML.

X3.2 The order of the borderline symbols should reflect similarity to surrounding or adjacent soils. For example: soils in a borrow area have been identified as CH. One sample is considered to have a borderline symbol of CL and CH. To show similarity, the borderline symbol should be CH/CL.

X3.3 The group name for a soil with a borderline symbol should be the group name for the first symbol, except for:

CL/CH lean to fat clay ML/CL clayey silt CL/ML silty clay

X3.4 The use of a borderline symbol should not be used indiscriminately. Every effort shall be made to first place the soil into a single group.

X4. SUGGESTED PROCEDURES FOR ESTIMATING THE PERCENTAGES OF GRAVEL, SAND, AND FINES IN A SOIL SAMPLE

X4.1 *Jar Method*—The relative percentage of coarse- and fine-grained material may be estimated by thoroughly shaking a mixture of soil and water in a test tube or jar, and then allowing the mixture to settle. The coarse particles will fall to the bottom and successively finer particles will be deposited with increasing time; the sand sizes will fall out of suspension in 20 to 30 s. The relative proportions can be estimated from the relative volume of each size separate. This method should be correlated to particle-size laboratory determinations.

X4.2 *Visual Method*—Mentally visualize the gravel size particles placed in a sack (or other container) or sacks. Then, do the same with the sand size particles and the fines. Then, mentally compare the number of sacks to estimate the percentage of plus No. 4 sieve size and minus No. 4 sieve size present.

The percentages of sand and fines in the minus sieve size No. 4 material can then be estimated from the wash test (X4.3).

X4.3 Wash Test (for relative percentages of sand and fines)—Select and moisten enough minus No. 4 sieve size material to form a 1-in (25-mm) cube of soil. Cut the cube in half, set one-half to the side, and place the other half in a small dish. Wash and decant the fines out of the material in the dish until the wash water is clear and then compare the two samples and estimate the percentage of sand and fines. Remember that the percentage is based on weight, not volume. However, the volume comparison will provide a reasonable indication of grain size percentages.

X4.3.1 While washing, it may be necessary to break down lumps of fines with the finger to get the correct percentages.

X5. ABBREVIATED SOIL CLASSIFICATION SYMBOLS

X5.1 In some cases, because of lack of space, an abbreviated system may be useful to indicate the soil classification symbol and name. Examples of such cases would be graphical logs, databases, tables, etc.

X5.2 This abbreviated system is not a substitute for the full name and descriptive information but can be used in supple-

mentary presentations when the complete description is referenced.

X5.3 The abbreviated system should consist of the soil classification symbol based on this standard with appropriate lower case letter prefixes and suffixes as:

Prefix: Suffix:

		Group Symbol and Full Name	Abbreviated
s = sandy	s = with sand		
g = gravelly	g = with gravel	CL, Sandy lean clay	s(CL)
	c = with cobbles	SP-SM, Poorly graded sand with silt and gravel	(SP-SM)g
	b = with boulders	GP, poorly graded gravel with sand, cobbles, and	(GP)scb
		boulders	
		ML, gravelly silt with sand and cobbles	g(ML)sc
4 The soil classifi	cation symbol is to be enclosed in		

X5.4 The soil classification symbol is to be enclosed in parenthesis. Some examples would be:

SUMMARY OF CHANGES

In accordance with Committee D18 policy, this section identifies the location of changes to this standard since the last edition $(1993^{\epsilon 1})$ that may impact the use of this standard.

(1) Added Practice D 3740 to Section 2.

(2) Added Note 5 under 5.7 and renumbered subsequent notes.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

PROJECT: J.F. Moran Terminal Sediment Sampling	DATE: <u>7/13/2020</u>
SAMPLING PERSONNEL: E. Steele, K. Steek, K. Tongue	SEA STATE: Calm
LOCATION: Mystic River, Charlestown, MA	WEATHER CODE: Overcast, Light rain, 70°
METHODS: Pneumatic vibrocore, 4-inch diameter barrel	
SAMPLE ID: JFM-1	SAMPLER TYPE: Vibrocore
TIME: 0810	
SOUNDING: 47.5'	CORRECTED DEPTH: 40'
COORDINATES: N 42.3844890	Е -71.0543936

PENETRATION/RECOVERY:P: 9.0', large rounded gravel in tip, R: 3.5'NO. OF ATTEMPTS:3MATERIAL DESCRIPTION:See description below

CORE PHOTO:	NOTES:
CORE PHOTO:	NOTES: JFM-1 Field Notes and Description of Core 0 - 0.5': Loose black silt with organics 0.5 - 1.2': Black sandy silt with small angular gravel and trace shell hash 1.2 - 3.1': Grey black sandy silt, trace organics 3.1 - 3.5': Rounded gravel 1 - 2.5" diameter Odor: Faint hydrocarbon Sheen: None
0' = Sediment water interface	

PROJECT: J.F. Moran Term	inal Sediment Sampling	DA	TE: <u>7/13/2020</u>	
SAMPLING PERSONNEL: E. Ste	ele, K. Steek, K. Tongue	SEA	STATE: Calm	
LOCATION: Mystic River, Charle	estown, MA	WEA	THER CODE:	Overcast, Light rain, 70°
METHODS: Pneumatic vibrocore,	4-inch diameter barrel			
SAMPLE ID: JFM-2			PLER TYPE:	Vibrocore
TIME: 0900				
SOUNDING: 46'		CORF	RECTED DEPT	TH: 40'
COORDINATES: N 42.3845986		E -	71.0542477	
PENETRATION/RECOVERY:	P: 3.5', R: 2.9' refusal			NO. OF ATTEMPTS: 3
MATERIAL DESCRIPTION:	See description below			

CORE PHOTO:	NOTES:
<pre>continueto.</pre>	JFM-2 Field Notes and Description of Core 0 - 0.6': Loose black silt, shell hash 0.6 - 1.4': Black silt and trace shell hash 1.4 - 2.9': Fine grey sandy silt, trace shell hash Odor: Faint hydrocarbon Sheen: Slight sheen present

PROJECT: J.F. Moran Terminal Sediment Sampling	DATE: <u>7/13/2020</u>		
SAMPLING PERSONNEL: E. Steele, K. Steek, K. Tongue	SEA STATE: Calm		
LOCATION: Mystic River, Charlestown, MA	WEATHER CODE: Overcast, Light rain, 70°		
METHODS: Pneumatic vibrocore, 4-inch diameter barrel			
SAMPLE ID: JFM-3	SAMPLER TYPE: Vibrocore		
TIME: 0935			
SOUNDING: 46'	CORRECTED DEPTH: 41'		
COORDINATES: N 42.38465	Е -71.0540069		
PENETRATION/RECOVERY: P: 2.0', R: 1.8'	NO. OF ATTEMPTS: <u>3</u>		
MATERIAL DESCRIPTION: See description below			

CORE PHOTO:	NOTES:
CORE PHOTO:Image: contract of the second of the seco	NOTES: JFM-3 Field Notes and Description of Core 0 - 0.2': Loose light grey silt 0.2 - 0.6': Light grey silt 0.6 - 1.6': Dark grey silt, trace fine grey sand 1.6 - 1.8': Fine grey sandy silt Odor: None Sheen: None

PROJECT: J.F. Moran Terminal Sediment Sampling DATE: 7/13/2020			
SAMPLING PERSONNEL: E. Steele, K.	Steek, K. Tongue SEA STATE: Calm		
LOCATION: Mystic River, Charlestown,	MA WEATHER CODE: Overcast, Light rain, 70°		
METHODS: Pneumatic vibrocore, 4-inch	diameter barrel		
SAMPLE ID: JFM-4	SAMPLER TYPE: Vibrocore		
TIME: 1045			
SOUNDING: <u>44.5'</u>	CORRECTED DEPTH: 41'		
COORDINATES: N <u>42.3844418</u>	Е -71.0534056		
PENETRATION/ P: 6.0	0', R: 3.5' NO. OF ATTEMPTS: 5		
RECOVERY: MATERIAL See	description below		
DESCRIPTION:			
CORE PHOTO:	NOTES:		
	IFM 4 Field Notes and Description of Corre		
	JFM-4 Field Notes and Description of Core		
	0 - 0.4': Loose black silt, organics, leaf litter		
	0 0.4. Loose black sht, organies, rear fitter		
	0.4 - 2.7': Grey fine sandy silt		
2 A A A A A A A A A A A A A A A A A A A	2.7 - 3.5': Grey firm clay		
A A A A A A A A A A A A A A A A A A A	Odor: None		
	Sheen: None		
Ar and a second s			
0' = Sediment water interface			

PROJECT: J.F. Moran Terminal Se	diment Sampling DATE: 7/13/2020			
SAMPLING PERSONNEL: E. Steele, K.	Steek, K. Tongue SEA STATE: Calm			
LOCATION: Mystic River, Charlestown,	MA WEATHER CODE: Overcast, Light rain, 70°			
METHODS: Pneumatic vibrocore, 4-inch	diameter barrel			
SAMPLE ID: JFM-5	SAMPLER TYPE: Vibrocore			
TIME: <u>1100</u>				
SOUNDING: <u>44'</u>	CORRECTED DEPTH: 41'			
COORDINATES: N <u>42.3845429</u>	Е71.0528601			
PENETRATION/ P: 5.5	5', R: 4.2' NO. OF ATTEMPTS: 1			
RECOVERY: MATERIAL See	description below			
DESCRIPTION:				
CORE PHOTO:	NOTES:			
	JFM-5 Field Notes and Description of Core			
	Ji W-9 I feld Notes and Description of Core			
	0 - 0.8': Loose grey silt			
	0.8 - 1.9': Grey fine sandy silt			
2-98	1.9 - 4.2': Grey medium sandy silt			
	Odor: None			
and the second se	Sheen: None			
Mun H				
in the second seco				
0' = Sediment water interface				
0 – Sediment water interface				

PROJECT: J.F. Moran Terminal Sediment Sampling		DATE: <u>7/13/202</u>	0
SAMPLING PERSONNEL: E. Steele, K. Steek, K. Tongue		SEA STATE: Caln	n
LOCATION: Mystic River, Charlestown, MA		WEATHER CODE:	Overcast, Light rain, 70°
METHODS: Pneumatic vibrocore, 4	4-inch diameter barrel	_	
SAMPLE ID: JFM-6		SAMPLER TYPE:	Vibrocore
TIME:1112			
SOUNDING: 43'		CORRECTED DEP	TH: 40'
COORDINATES: N 42.3843127		Е -71.0525877	
PENETRATION/RECOVERY:	P: 5.4', R: 4.2'		NO. OF ATTEMPTS: 1
MATERIAL DESCRIPTION:	See description below		

CORE PHOTO:	NOTES:
	NOTES: JFM-6 Field Notes and Description of Core - 0.5': Loose black silt, shell hash, organics 5 - 1.2': Black silt with medium sand 2 - 1.8': Black firm silt 8 - 4.2': Black silt with medium sand, trace organics dor: Slight H2S neen: None

PROJECT:	J.F. Moran Terminal Sediment Sampling	DATE: <u>7/13/2020</u>
SAMPLING F	PERSONNEL: E. Steele, K. Steek, K. Tongue	SEA STATE: Calm
LOCATION:	Mystic River, Charlestown, MA	WEATHER CODE: Overcast, Light rain, 70°
METHODS: I	Pneumatic vibrocore, 4-inch diameter barrel	
SAMPLE ID: JFM-7		SAMPLER TYPE: Vibrocore
TIME: 1	332	
SOUNDING: 43'		CORRECTED DEPTH: 40'
COORDINA	FES: N 42.3842229	Е -71.0518323
	P: 5.5' refusal, R: 3.4'	NO. OF ATTEMPTS: 3

PENETRATION/RECOVERY: MATERIAL DESCRIPTION:

CORE PHOTO:	NOTES:
CORE PHOTO:	NOTES: JFM-7 Field Notes and Description of Core 0 - 0.4': Loose black silt, shell hash, mussels 0.4 - 3.4': Medium / fine sandy grey silt Odor: None Sheen: None
0' = Sediment water interface	

PROJECT:	J.F. Moran Terminal Sediment Sampling	DATE: <u>7/13/2020</u>
SAMPLING F	PERSONNEL: E. Steele, K. Steek, K. Tongue	SEA STATE: Calm
LOCATION:	Mystic River, Charlestown, MA	WEATHER CODE: Overcast, Light rain, 70°
METHODS: I	Pneumatic vibrocore, 4-inch diameter barrel	
SAMPLE ID: JFM-8		SAMPLER TYPE: Vibrocore
TIME: 1	155	
SOUNDING: 43'		CORRECTED DEPTH: 40'
COORDINATES: N <u>42.38436245</u>		E -71.05129671
PENETRATION/RECOVERY: P: 5.0', R: 3.4'		NO. OF ATTEMPTS: 3

PENETRATION/RECOVERY: MATERIAL DESCRIPTION:

PROJECT: J.F. Moran Terminal Sediment Sampling	DATE: <u>7/13/2020</u>
SAMPLING PERSONNEL: E. Steele, K. Steek, K. Tongue	SEA STATE: Calm
LOCATION: Mystic River, Charlestown, MA	WEATHER CODE: Overcast, Light rain, 70°
METHODS: Pneumatic vibrocore, 4-inch diameter barrel	
SAMPLE ID: JFM-9	SAMPLER TYPE: Vibrocore
TIME: <u>1220</u>	
SOUNDING: <u>39</u>	CORRECTED DEPTH: 37'
COORDINATES: N 42.38418377	Е -71.05104503
PENETRATION/RECOVERY: P: 6.5', R: 3.8'	NO. OF ATTEMPTS: 3

MATERIAL DESCRIPTION:

CORE PHOTO:	NOTES:
СОПЕ РНОТО:	JFM-9 Field Notes and Description of Core 0 - 0.3': Loose grey silt 0.3 - 1.2': Fine grey fine sandy silt 1.2 - 3.8': Medium sandy grey silt with trace organics Odor: None
0' = Sediment water interface	Sheen: None

PROJECT: J.F. Moran Terminal Sedim	ent Sampling DATE: 7/13/2020				
SAMPLING PERSONNEL: E. Steele, K. Ste	ek, K. Tongue SEA STATE: Calm				
LOCATION: Mystic River, Charlestown, MA	WEATHER CODE: Overcast, Light rain, 70°				
METHODS: Pneumatic vibrocore, 4-inch dia	meter barrel				
SAMPLE ID: JFM-10	SAMPLER TYPE: Vibrocore				
TIME: <u>1245</u>					
SOUNDING: <u>41'</u>	CORRECTED DEPTH: 39'				
COORDINATES: N <u>42.3842308</u>	ЕЕ				
PENETRATION/	efusal, R: 2.0' NO. OF ATTEMPTS: 6				
RECOVERY: MATERIAL See desc	cription below				
DESCRIPTION:					
CORE PHOTO:	NOTES:				
	JFM-10 Field Notes and Description of Core				
	si w to rick with Description of Core				
	0 - 0.4': Loose grey silt				
	0.4 - 2.0': Grey silt with fine sand.				
	Hard grey plug dropped out of				
	cutter-catcher assembly during				
	recovery, clay residue remained				
	Odor: None				
	Sheen: None				
0' = Sediment water interface					

PROJECT: J.F. Moran Termi	J.F. Moran Terminal Sediment Sampling			7/13/2020	
SAMPLING PERSONNEL: E. Steele, K. Steek, K. Tongue			SEA STA	ATE: Calm	
LOCATION: Mystic River, Charles	stown, MA		WEATHE	ER CODE:	Overcast, Light rain, 70°
METHODS: Pneumatic vibrocore,	4-inch diameter	barrel			
SAMPLE ID: JFM-11			SAMPLE	R TYPE:	Vibrocore
TIME: <u>1425</u>					
SOUNDING: <u>44'</u>			CORREC	TED DEPI	TH: <u>39'</u>
$\frac{42.384}{42.384}$	5375		E -71.0	0537043	
PENETRATION/RECOVERY:	P: 3.0' refusal,	R: 2.4'	_		NO. OF ATTEMPTS: 2
	See description	n below			
MATERIAL DESCRIPTION:					
CORE PHOTO:				NOTES:	:
		IEM 11	E:-14 NI-4		nintion of Com
	~	JFM-11 Field Notes and Description of Core			cription of Core
	0	0 - 0.4': Loose grey silt			
	0	.4 - 2.4': Bl	lack silt wi	th fine	
	2	2.4': Clay present in cutter-catcher			

tip

Odor: None

Sheen: None

0' = Sediment water interface

PROJECT:	J.F. Moran Terminal Sediment Sampling	DATE: <u>7/13/2020</u>
SAMPLING F	PERSONNEL: E. Steele, K. Steek, K. Tongue	SEA STATE: Calm
LOCATION:	Mystic River, Charlestown, MA	WEATHER CODE: Overcast, Light rain, 70°
METHODS: I	Pneumatic vibrocore, 4-inch diameter barrel	
SAMPLE ID: JFM-8		SAMPLER TYPE: Vibrocore
TIME: 1	155	
SOUNDING: 43'		CORRECTED DEPTH: 40'
COORDINATES: N <u>42.38436245</u>		E -71.05129671
PENETRATION/RECOVERY: P: 5.0', R: 3.4'		NO. OF ATTEMPTS: 3

PENETRATION/RECOVERY: MATERIAL DESCRIPTION:

ANALYTICAL REPORT

Lab Number:	L2029589
Client:	Steele Associates Marine Consultants LLC 94 Gifford Street Falmouth, MA 02540
ATTN:	Eric Steele
Phone:	(508) 540-0001
Project Name:	JF MORAN TERMINAL
Project Number:	DA-JFM-200713
Report Date:	08/13/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

AL
JF MORAN TERMINAL DA-JFM-200713
oject Name: oject Number:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2029589-01	JFM 1-3	SEDIMENT	CHARLESTOWN, MA	07/13/20 09:35	07/14/20
L2029589-02	JFM 4-6	SEDIMENT	CHARLESTOWN, MA	07/13/20 11:12	07/14/20
L2029589-03	JFM 8-10	SEDIMENT	CHARLESTOWN, MA	07/13/20 12:45	07/14/20
L2029589-04	JFM 7	SEDIMENT	CHARLESTOWN, MA	07/13/20 13:32	07/14/20
L2029589-05	JFM 11	SEDIMENT	CHARLESTOWN, MA	07/13/20 14:25	07/14/20
L2029589-06	JFM 12	SEDIMENT	CHARLESTOWN, MA	07/13/20 13:50	07/14/20

Lab Number: L2029589 Report Date: 08/13/20

Serial_No:08132016:52

L2029589

Project Name: JF MORAN TERMINAL

Report Date: 08/13/20

Lab Number:

Project Number: DA-JFM-200713

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	NO
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: JF MORAN TERMINAL Project Number: DA-JFM-200713

Lab Number: L2029589 Report Date: 08/13/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: JF MORAN TERMINAL Project Number: DA-JFM-200713
 Lab Number:
 L2029589

 Report Date:
 08/13/20

Case Narrative (continued)

Report Submission

The analysis of method 8260 was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

MCP Related Narratives

All MCP required questions were answered with affirmative responses; therefore, there are no relevant protocol-specific QC and/or performance standard non-conformances to report.

Sample Receipt

L2029589-04: A sample container identified as "JFM 7" was listed on the Chain of Custody, but not received. This was verified by the client.

L2029589-05: A sample container identified as "JFM 11" was listed on the Chain of Custody, but not received. This was verified by the client.

L2029589-06: A sample container identified as "JFM 12" was listed on the Chain of Custody, but not received. This was verified by the client.

L2029589-04, -05, and -06: The sample was received in an inappropriate container for the Subcontract -VOCs - EPA 8260C/5035 High & Low analysis. An aliquot was taken from an unpreserved container and preserved appropriately.

Non-MCP Related Narratives

Total Organic Carbon

L2029589-03: The Sample Replicate RPD is outside the acceptance criteria of 30%. A double-burn reanalysis was performed with a confirming result. The results of the original analysis are reported. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

Project Name:JF MORAN TERMINALProject Number:DA-JFM-200713

 Lab Number:
 L2029589

 Report Date:
 08/13/20

Case Narrative (continued)

Grain Size Analysis

The WG1394358-1 Laboratory Duplicate RPD for % medium sand (21%), performed on L2029589-02, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jusen E Diled Susan O' Neil

Title: Technical Director/Representative

Date: 08/13/20

Serial_No:08132016:52

QC OUTLIER SUMMARY REPORT

Project Project	Project Name: , Project Number: [JF MORAN TERMINAL DA-JFM-200713	ERMINAL 13				Lab Number: Report Date:	0	_2029589 38/13/20
Method	Client ID (Native ID)	lative ID)	Lab ID	Parameter	QC Type	Recovery/RPD QC Limits Associated Data Quality (%) (%) Samples Assessment) QC Limits (%)	Associated Samples	Data Quality Assessment
Grain Size Anal	Grain Size Analysis - Mansfield Lab	-ab							
D6913/D7928 Be	D6913/D7928 Batch QC (L2029589-02)	89-02)	WG1394358-1	% Medium Sand	Duplicate	21	20	01-06	non-directional bias

ORGANICS

SEMIVOLATILES

			Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-01 D2		Date Collected:	07/13/20 09:35
Client ID:	JFM 1-3		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Sediment		Extraction Method	d: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)		Extraction Date:	07/17/20 16:22
Analytical Date:	08/06/20 10:35		Cleanup Method:	EPA 3630
Analyst:	GP		Cleanup Date:	07/20/20
Percent Solids:	48%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/MS -	Mansfield Lab					
Fluoranthene	11200		ug/kg	81.9	40.9	10
Pyrene	10000		ug/kg	81.9	40.9	10
Surrogate			% Recovery	Qualifier	Accep Crit	
2-Methylnaphthalene-d10			66		30	-150
Pyrene-d10			75		30	-150
Benzo(b)fluoranthene-d12			81		30	-150
DBOB			102		50	-125
BZ 198			103		50	-125

			Serial_No	:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2029589-01 D JFM 1-3 CHARLESTOWN, MA		Date Collected: Date Received: Field Prep:	07/13/20 09:35 07/14/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Sediment 105,8270D-SIM/680(M) 08/05/20 16:56 GP 48%		Extraction Method Extraction Date: Cleanup Method: Cleanup Date:	07/17/20 16:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/M	S - Mansfield Lab					
Naphthalene	1320		ug/kg	40.9	20.5	5
Acenaphthylene	492		ug/kg	40.9	20.5	5
Acenaphthene	427		ug/kg	40.9	20.5	5
Fluorene	227		ug/kg	40.9	20.5	5
Phenanthrene	4460		ug/kg	40.9	20.5	5
Anthracene	929		ug/kg	40.9	20.5	5
Fluoranthene	11700	Е	ug/kg	40.9	20.5	5
Pyrene	9870	E	ug/kg	40.9	20.5	5
Benz(a)anthracene	3880		ug/kg	40.9	20.5	5
Chrysene	3940		ug/kg	40.9	20.5	5
Benzo(b)fluoranthene	3130		ug/kg	40.9	20.5	5
Benzo(k)fluoranthene	2810		ug/kg	40.9	20.5	5
Benzo(a)pyrene	3130		ug/kg	40.9	20.5	5
Indeno(1,2,3-cd)Pyrene	1700		ug/kg	40.9	20.5	5
Dibenz(a,h)anthracene	330		ug/kg	40.9	20.5	5
Benzo(ghi)perylene	1570		ug/kg	40.9	20.5	5
CI2-BZ#8	ND		ug/kg	4.09	2.05	5
CI3-BZ#18	ND		ug/kg	4.09	2.05	5
CI3-BZ#28	27.3		ug/kg	4.09	2.05	5
CI4-BZ#44	13.5		ug/kg	4.09	2.05	5
CI4-BZ#49	7.54		ug/kg	4.09	2.05	5
CI4-BZ#52	16.3		ug/kg	4.09	2.05	5
CI4-BZ#66	9.99		ug/kg	4.09	2.05	5
CI5-BZ#87	12.6		ug/kg	4.09	2.05	5
CI5-BZ#101	32.0		ug/kg	4.09	2.05	5
CI5-BZ#105	11.7		ug/kg	4.09	2.05	5
CI5-BZ#118	25.8		ug/kg	4.09	2.05	5
CI6-BZ#128	9.49		ug/kg	4.09	2.05	5

					Serial_N	p:08132016:52
Project Name:	JF MORAN TERMINAL				Lab Number:	L2029589
Project Number:	DA-JFM-200713				Report Date:	08/13/20
		SAMPL	E RESULTS	5		
Lab ID:	L2029589-01 D				Date Collected:	07/13/20 09:35
Client ID:	JFM 1-3				Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA				Field Prep:	Not Specified
Sample Depth:						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
PAHs/PCB Congeners by GC/MS - Mansfield Lab									
Cl6-BZ#138	36.1		ug/kg	4.09	2.05	5			
Cl6-BZ#153	27.8		ug/kg	4.09	2.05	5			
CI7-BZ#170	11.1		ug/kg	4.09	2.05	5			
CI7-BZ#180	16.3		ug/kg	4.09	2.05	5			
CI7-BZ#183	3.91	J	ug/kg	4.09	2.05	5			
CI7-BZ#184	ND		ug/kg	4.09	2.05	5			
CI7-BZ#187	7.75		ug/kg	4.09	2.05	5			
Cl8-BZ#195	ND		ug/kg	4.09	2.05	5			
CI9-BZ#206	2.71	J	ug/kg	4.09	2.05	5			
CI10-BZ#209	2.14	J	ug/kg	4.09	2.05	5			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Methylnaphthalene-d10	65	30-150	
Pyrene-d10	72	30-150	
Benzo(b)fluoranthene-d12	78	30-150	
DBOB	99	50-125	
BZ 198	100	50-125	

			Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-02 D		Date Collected:	07/13/20 11:12
Client ID:	JFM 4-6		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Sediment		Extraction Method	1: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)		Extraction Date:	07/17/20 16:22
Analytical Date:	08/05/20 17:26		Cleanup Method:	EPA 3630
Analyst:	GP		Cleanup Date:	07/20/20
Percent Solids:	50%			

Parameter	Result	Qualifier Un	its RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/M	IS - Mansfield Lab				
Naphthalene	2320	ug/	ka 37.3	18.6	5
Acenaphthylene	419	ug/	-9	18.6	5
Acenaphthene	188	ug/	0	18.6	5
Fluorene	304	ug/	0	18.6	5
Phenanthrene	1220	ug/	5	18.6	5
Anthracene	917	ug/	0	18.6	5
Fluoranthene	3010	ug/	5	18.6	5
Pyrene	4530	ug/	•	18.6	5
Benz(a)anthracene	2080		-	18.6	5
Chrysene	2080	ug/ ug/	5	18.6	5
Benzo(b)fluoranthene	1920	-	0	18.6	5
Benzo(k)fluoranthene	1920	ug/ ug/	•	18.6	5
Benzo(a)pyrene	1470	ug/	0	18.6	5
Indeno(1,2,3-cd)Pyrene	1020	-	-	18.6	5
Dibenz(a,h)anthracene	240	ug/ ug/	•	18.6	5
Bioenz(ghi)perylene	1000	-	0	18.6	5
CI2-BZ#8	ND	ug/	-	1.86	5
CI2-BZ#8 CI3-BZ#18	ND	ug/	5	1.86	5
CI3-BZ#28	49.1	ug/	•	1.86	5
CI3-BZ#20 CI4-BZ#44	20.2	ug/	0	1.86	5
Cl4-BZ#44 Cl4-BZ#49	13.0	ug/	0		
	32.6	ug/		1.86	5
Cl4-BZ#52 Cl4-BZ#66	17.4	ug/	-	1.86	
		ug/	-	1.86	5
CI5-BZ#87	18.3	ug/		1.86	5
CI5-BZ#101	45.6	ug/	•	1.86	5
CI5-BZ#105	17.6	ug/		1.86	5
CI5-BZ#118	34.3	ug/		1.86	5
CI6-BZ#128	14.0	ug/	kg 3.73	1.86	5

					Serial_N	p:08132016:52
Project Name:	JF MORAN TERMINAL				Lab Number:	L2029589
Project Number:	DA-JFM-200713				Report Date:	08/13/20
		SAMPL	E RESULTS	5		
Lab ID:	L2029589-02 D				Date Collected:	07/13/20 11:12
Client ID:	JFM 4-6				Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA				Field Prep:	Not Specified
Sample Depth:						
_		B 1/	•			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
PAHs/PCB Congeners by GC/MS - Mansfield Lab								
Cl6-BZ#138	44.3		ug/kg	3.73	1.86	5		
Cl6-BZ#153	33.5		ug/kg	3.73	1.86	5		
CI7-BZ#170	8.54		ug/kg	3.73	1.86	5		
CI7-BZ#180	22.9		ug/kg	3.73	1.86	5		
CI7-BZ#183	5.05		ug/kg	3.73	1.86	5		
CI7-BZ#184	ND		ug/kg	3.73	1.86	5		
CI7-BZ#187	10.9		ug/kg	3.73	1.86	5		
Cl8-BZ#195	2.40	J	ug/kg	3.73	1.86	5		
CI9-BZ#206	3.24	J	ug/kg	3.73	1.86	5		
CI10-BZ#209	2.52	J	ug/kg	3.73	1.86	5		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Methylnaphthalene-d10	64	30-150	
Pyrene-d10	72	30-150	
Benzo(b)fluoranthene-d12	68	30-150	
DBOB	82	50-125	
BZ 198	73	50-125	

			Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-03 D		Date Collected:	07/13/20 12:45
Client ID:	JFM 8-10		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Sediment		Extraction Method	I: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)		Extraction Date:	07/17/20 16:22
Analytical Date:	08/05/20 17:56		Cleanup Method:	EPA 3630
Analyst:	GP		Cleanup Date:	07/20/20
Percent Solids:	47%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/M	IS - Mansfield Lab				
Naphthalene	1160	ug/kg	39.7	19.8	5
Acenaphthylene	217	ug/kg	39.7	19.8	5
Acenaphthene	88.0	ug/kg	39.7	19.8	5
Fluorene	122	ug/kg	39.7	19.8	5
Phenanthrene	634	ug/kg	39.7	19.8	5
Anthracene	396	ug/kg	39.7	19.8	5
Fluoranthene	1150	ug/kg	39.7	19.8	5
Pyrene	1900	ug/kg	39.7	19.8	5
Benz(a)anthracene	778	ug/kg	39.7	19.8	5
Chrysene	995	ug/kg	39.7	19.8	5
Benzo(b)fluoranthene	1260	ug/kg	39.7	19.8	5
Benzo(k)fluoranthene	818	ug/kg	39.7	19.8	5
Benzo(a)pyrene	1070	ug/kg	39.7	19.8	5
Indeno(1,2,3-cd)Pyrene	656	ug/kg	39.7	19.8	5
Dibenz(a,h)anthracene	158	ug/kg	39.7	19.8	5
Benzo(ghi)perylene	692	ug/kg	39.7	19.8	5
CI2-BZ#8	ND	ug/kg	3.97	1.98	5
Cl3-BZ#18	ND	ug/kg	3.97	1.98	5
Cl3-BZ#28	ND	ug/kg	3.97	1.98	5
CI4-BZ#44	12.3	ug/kg	3.97	1.98	5
CI4-BZ#49	9.07	ug/kg	3.97	1.98	5
CI4-BZ#52	18.2	ug/kg	3.97	1.98	5
CI4-BZ#66	9.80	ug/kg	3.97	1.98	5
CI5-BZ#87	12.0	ug/kg	3.97	1.98	5
CI5-BZ#101	28.1	ug/kg	3.97	1.98	5
CI5-BZ#105	13.4	ug/kg	3.97	1.98	5
CI5-BZ#118	23.6	ug/kg	3.97	1.98	5
Cl6-BZ#128	7.74	ug/kg	3.97	1.98	5

			Serial_N	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-03 D		Date Collected:	07/13/20 12:45
Client ID:	JFM 8-10		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
PAHs/PCB Congeners by GC/MS - Mansfield Lab								
Cl6-BZ#138	32.1		ug/kg	3.97	1.98	5		
Cl6-BZ#153	22.4		ug/kg	3.97	1.98	5		
CI7-BZ#170	6.30		ug/kg	3.97	1.98	5		
CI7-BZ#180	13.5		ug/kg	3.97	1.98	5		
CI7-BZ#183	3.13	J	ug/kg	3.97	1.98	5		
CI7-BZ#184	ND		ug/kg	3.97	1.98	5		
CI7-BZ#187	8.38		ug/kg	3.97	1.98	5		
Cl8-BZ#195	2.11	J	ug/kg	3.97	1.98	5		
CI9-BZ#206	3.24	J	ug/kg	3.97	1.98	5		
CI10-BZ#209	2.25	J	ug/kg	3.97	1.98	5		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Methylnaphthalene-d10	64	30-150	
Pyrene-d10	67	30-150	
Benzo(b)fluoranthene-d12	72	30-150	
DBOB	91	50-125	
BZ 198	97	50-125	

			Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-04 D		Date Collected:	07/13/20 13:32
Client ID:	JFM 7		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Sediment		Extraction Method	I: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)		Extraction Date:	07/17/20 16:22
Analytical Date:	08/05/20 18:26		Cleanup Method:	EPA 3630
Analyst:	GP		Cleanup Date:	07/20/20
Percent Solids:	47%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/M	S - Mansfield Lab				
Naphthalene	454	ug/kg	41.5	20.8	5
Acenaphthylene	125	ug/kg	41.5	20.8	5
Acenaphthene	44.4	ug/kg	41.5	20.8	5
Fluorene	68.3	ug/kg	41.5	20.8	5
Phenanthrene	401	ug/kg	41.5	20.8	5
Anthracene	230	ug/kg	41.5	20.8	5
Fluoranthene	852	ug/kg	41.5	20.8	5
Pyrene	1430	ug/kg	41.5	20.8	5
Benz(a)anthracene	684	ug/kg	41.5	20.8	5
Chrysene	740	ug/kg	41.5	20.8	5
Benzo(b)fluoranthene	848	ug/kg	41.5	20.8	5
Benzo(k)fluoranthene	602	ug/kg	41.5	20.8	5
Benzo(a)pyrene	773	ug/kg	41.5	20.8	5
Indeno(1,2,3-cd)Pyrene	475	ug/kg	41.5	20.8	5
Dibenz(a,h)anthracene	113	ug/kg	41.5	20.8	5
Benzo(ghi)perylene	488	ug/kg	41.5	20.8	5
CI2-BZ#8	ND	ug/kg	4.15	2.08	5
CI3-BZ#18	ND	ug/kg	4.15	2.08	5
Cl3-BZ#28	12.2	ug/kg	4.15	2.08	5
CI4-BZ#44	13.0	ug/kg	4.15	2.08	5
CI4-BZ#49	9.27	ug/kg	4.15	2.08	5
Cl4-BZ#52	21.0	ug/kg	4.15	2.08	5
CI4-BZ#66	12.5	ug/kg	4.15	2.08	5
CI5-BZ#87	14.0	ug/kg	4.15	2.08	5
CI5-BZ#101	32.1	ug/kg	4.15	2.08	5
CI5-BZ#105	14.1	ug/kg	4.15	2.08	5
CI5-BZ#118	26.1	ug/kg	4.15	2.08	5
Cl6-BZ#128	12.1	ug/kg	4.15	2.08	5

			Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-04 D		Date Collected:	07/13/20 13:32
Client ID:	JFM 7		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				

Result	Qualifier	Units	RL	MDL	Dilution Factor			
PAHs/PCB Congeners by GC/MS - Mansfield Lab								
37.4		ug/kg	4.15	2.08	5			
27.2		ug/kg	4.15	2.08	5			
8.33		ug/kg	4.15	2.08	5			
15.6		ug/kg	4.15	2.08	5			
4.21		ug/kg	4.15	2.08	5			
ND		ug/kg	4.15	2.08	5			
10.2		ug/kg	4.15	2.08	5			
ND		ug/kg	4.15	2.08	5			
3.47	J	ug/kg	4.15	2.08	5			
2.95	J	ug/kg	4.15	2.08	5			
	field Lab 37.4 27.2 8.33 15.6 4.21 ND 10.2 ND 3.47	field Lab 37.4 27.2 8.33 15.6 4.21 ND 10.2 ND 3.47 J	37.4 ug/kg 27.2 ug/kg 8.33 ug/kg 15.6 ug/kg 4.21 ug/kg ND ug/kg 10.2 ug/kg 3.47 J ug/kg	37.4 ug/kg 4.15 27.2 ug/kg 4.15 8.33 ug/kg 4.15 15.6 ug/kg 4.15 4.21 ug/kg 4.15 10.2 ug/kg 4.15 ND ug/kg 4.15 3.47 J ug/kg 4.15	37.4 ug/kg 4.15 2.08 27.2 ug/kg 4.15 2.08 8.33 ug/kg 4.15 2.08 15.6 ug/kg 4.15 2.08 4.21 ug/kg 4.15 2.08 10.2 ug/kg 4.15 2.08 ND ug/kg 4.15 2.08 3.47 J ug/kg 4.15 2.08			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Methylnaphthalene-d10	63	30-150	
Pyrene-d10	67	30-150	
Benzo(b)fluoranthene-d12	70	30-150	
DBOB	87	50-125	
BZ 198	99	50-125	

			Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-05 D		Date Collected:	07/13/20 14:25
Client ID:	JFM 11		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Sediment		Extraction Method	I: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)		Extraction Date:	07/17/20 16:22
Analytical Date:	08/05/20 18:57		Cleanup Method:	EPA 3630
Analyst:	GP		Cleanup Date:	07/20/20
Percent Solids:	44%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/M	S - Mansfield Lab				
Naphthalene	1640	ug/kg	44.5	22.2	5
Acenaphthylene	311	ug/kg	44.5	22.2	5
Acenaphthene	453	ug/kg	44.5	22.2	5
Fluorene	330	ug/kg	44.5	22.2	5
Phenanthrene	3170	ug/kg	44.5	22.2	5
Anthracene	741	ug/kg	44.5	22.2	5
Fluoranthene	4320	ug/kg	44.5	22.2	5
Pyrene	5300	ug/kg	44.5	22.2	5
Benz(a)anthracene	2190	ug/kg	44.5	22.2	5
Chrysene	2480	ug/kg	44.5	22.2	5
Benzo(b)fluoranthene	2640	ug/kg	44.5	22.2	5
Benzo(k)fluoranthene	2240	ug/kg	44.5	22.2	5
Benzo(a)pyrene	2590	ug/kg	44.5	22.2	5
Indeno(1,2,3-cd)Pyrene	1510	ug/kg	44.5	22.2	5
Dibenz(a,h)anthracene	344	ug/kg	44.5	22.2	5
Benzo(ghi)perylene	1530	ug/kg	44.5	22.2	5
Cl2-BZ#8	5.34	ug/kg	4.45	2.22	5
CI3-BZ#18	17.0	ug/kg	4.45	2.22	5
CI3-BZ#28	41.5	ug/kg	4.45	2.22	5
CI4-BZ#44	17.5	ug/kg	4.45	2.22	5
CI4-BZ#49	11.9	ug/kg	4.45	2.22	5
Cl4-BZ#52	25.4	ug/kg	4.45	2.22	5
CI4-BZ#66	13.0	ug/kg	4.45	2.22	5
CI5-BZ#87	16.8	ug/kg	4.45	2.22	5
CI5-BZ#101	43.0	ug/kg	4.45	2.22	5
CI5-BZ#105	20.4	ug/kg	4.45	2.22	5
CI5-BZ#118	32.4	ug/kg	4.45	2.22	5
Cl6-BZ#128	13.0	ug/kg	4.45	2.22	5

			Serial_No	p:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-05 D		Date Collected:	07/13/20 14:25
Client ID:	JFM 11		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
PAHs/PCB Congeners by GC/MS - Mansfield Lab								
Cl6-BZ#138	47.3		ug/kg	4.45	2.22	5		
Cl6-BZ#153	33.8		ug/kg	4.45	2.22	5		
CI7-BZ#170	11.6		ug/kg	4.45	2.22	5		
CI7-BZ#180	21.1		ug/kg	4.45	2.22	5		
CI7-BZ#183	5.25		ug/kg	4.45	2.22	5		
CI7-BZ#184	ND		ug/kg	4.45	2.22	5		
CI7-BZ#187	13.1		ug/kg	4.45	2.22	5		
Cl8-BZ#195	3.04	J	ug/kg	4.45	2.22	5		
CI9-BZ#206	6.09		ug/kg	4.45	2.22	5		
CI10-BZ#209	3.14	J	ug/kg	4.45	2.22	5		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Methylnaphthalene-d10	64	30-150	
Pyrene-d10	66	30-150	
Benzo(b)fluoranthene-d12	70	30-150	
DBOB	92	50-125	
BZ 198	86	50-125	

			Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-06 D		Date Collected:	07/13/20 13:50
Client ID:	JFM 12		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Sediment		Extraction Method	I: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)		Extraction Date:	07/17/20 16:22
Analytical Date:	08/05/20 19:27		Cleanup Method:	EPA 3630
Analyst:	GP		Cleanup Date:	07/20/20
Percent Solids:	44%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/M	IS - Mansfield Lab					
Naphthalene	923		ug/kg	42.3	21.1	5
Acenaphthylene	200		ug/kg	42.3	21.1	5
Acenaphthene	66.2		ug/kg	42.3	21.1	5
Fluorene	96.6		ug/kg	42.3	21.1	5
Phenanthrene	529		ug/kg	42.3	21.1	5
Anthracene	342		ug/kg	42.3	21.1	5
Fluoranthene	1050		ug/kg	42.3	21.1	5
Pyrene	1890		ug/kg	42.3	21.1	5
Benz(a)anthracene	693		ug/kg	42.3	21.1	5
Chrysene	938		ug/kg	42.3	21.1	5
Benzo(b)fluoranthene	1230		ug/kg	42.3	21.1	5
Benzo(k)fluoranthene	952		ug/kg	42.3	21.1	5
Benzo(a)pyrene	1140		ug/kg	42.3	21.1	5
Indeno(1,2,3-cd)Pyrene	692		ug/kg	42.3	21.1	5
Dibenz(a,h)anthracene	158		ug/kg	42.3	21.1	5
Benzo(ghi)perylene	715		ug/kg	42.3	21.1	5
CI2-BZ#8	2.60	J	ug/kg	4.23	2.11	5
Cl3-BZ#18	ND		ug/kg	4.23	2.11	5
Cl3-BZ#28	45.8		ug/kg	4.23	2.11	5
CI4-BZ#44	14.4		ug/kg	4.23	2.11	5
CI4-BZ#49	8.02		ug/kg	4.23	2.11	5
CI4-BZ#52	19.6		ug/kg	4.23	2.11	5
Cl4-BZ#66	12.0		ug/kg	4.23	2.11	5
CI5-BZ#87	14.0		ug/kg	4.23	2.11	5
CI5-BZ#101	29.8		ug/kg	4.23	2.11	5
CI5-BZ#105	12.7		ug/kg	4.23	2.11	5
Cl5-BZ#118	25.2		ug/kg	4.23	2.11	5
Cl6-BZ#128	7.92		ug/kg	4.23	2.11	5

			Serial_No	p:08132016:52
Project Name:	JF MORAN TERMINAL		Lab Number:	L2029589
Project Number:	DA-JFM-200713		Report Date:	08/13/20
		SAMPLE RESULTS		
Lab ID:	L2029589-06 D		Date Collected:	07/13/20 13:50
Client ID:	JFM 12		Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs/PCB Congeners by GC/MS - Ma	ansfield Lab					
Cl6-BZ#138	36.6		ug/kg	4.23	2.11	5
Cl6-BZ#153	26.2		ug/kg	4.23	2.11	5
CI7-BZ#170	9.39		ug/kg	4.23	2.11	5
CI7-BZ#180	15.8		ug/kg	4.23	2.11	5
CI7-BZ#183	3.85	J	ug/kg	4.23	2.11	5
CI7-BZ#184	ND		ug/kg	4.23	2.11	5
CI7-BZ#187	10.2		ug/kg	4.23	2.11	5
Cl8-BZ#195	ND		ug/kg	4.23	2.11	5
CI9-BZ#206	2.64	J	ug/kg	4.23	2.11	5
CI10-BZ#209	3.03	J	ug/kg	4.23	2.11	5

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Methylnaphthalene-d10	63	30-150
Pyrene-d10	68	30-150
Benzo(b)fluoranthene-d12	74	30-150
DBOB	91	50-125
BZ 198	97	50-125

Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20

Method Blank Analysis Batch Quality Control

Analytical Method:	105,8270D-SIM/680(M)
Analytical Date:	08/05/20 14:24
Analyst:	GP

Extraction Method:EPA 3570Extraction Date:07/17/20 16:22Cleanup Method:EPA 3630Cleanup Date:07/20/20

arameter	Result	Qualifier	Units		RL	MDL
AHs/PCB Congeners by GC/MS	- Mansfield L	ab for sam	ole(s):	01-06	Batch:	WG1393433-7
Naphthalene	ND		ug/kg	2	1.00	2.00
Acenaphthylene	ND		ug/kg	2	1.00	2.00
Acenaphthene	ND		ug/kg	2	1.00	2.00
Fluorene	ND		ug/kg	2	1.00	2.00
Phenanthrene	ND		ug/kg	4	1.00	2.00
Anthracene	ND		ug/kg	4	1.00	2.00
Fluoranthene	ND		ug/kg	2	1.00	2.00
Pyrene	ND		ug/kg	2	1.00	2.00
Benz(a)anthracene	ND		ug/kg	2	1.00	2.00
Chrysene	ND		ug/kg	4	1.00	2.00
Benzo(b)fluoranthene	ND		ug/kg	2	1.00	2.00
Benzo(k)fluoranthene	ND		ug/kg	4	1.00	2.00
Benzo(a)pyrene	ND		ug/kg	4	1.00	2.00
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	4	1.00	2.00
Dibenz(a,h)anthracene	ND		ug/kg	4	1.00	2.00
Benzo(ghi)perylene	ND		ug/kg	4	1.00	2.00
CI2-BZ#8	ND		ug/kg	0	.400	0.200
CI3-BZ#18	ND		ug/kg	0	.400	0.200
CI3-BZ#28	ND		ug/kg	0	.400	0.200
CI4-BZ#44	ND		ug/kg	0	.400	0.200
Cl4-BZ#49	ND		ug/kg	0	.400	0.200
CI4-BZ#52	ND		ug/kg	0	.400	0.200
CI4-BZ#66	ND		ug/kg	0	.400	0.200
CI5-BZ#87	ND		ug/kg	0	.400	0.200
CI5-BZ#101	ND		ug/kg	0	.400	0.200
CI5-BZ#105	ND		ug/kg	0	.400	0.200
CI5-BZ#118	ND		ug/kg	0	.400	0.200
Cl6-BZ#128	ND		ug/kg	0	.400	0.200
Cl6-BZ#138	ND		ug/kg	0	.400	0.200

Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20

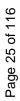
Method Blank Analysis Batch Quality Control

Analytical Method:	105,8270D-SIM/680(M)
Analytical Date:	08/05/20 14:24
Analyst:	GP

Extraction Method:EPA 3570Extraction Date:07/17/20 16:22Cleanup Method:EPA 3630Cleanup Date:07/20/20

Parameter	Result	Qualifier	Units	RL	MDL	
PAHs/PCB Congeners by GC/MS -	Mansfield L	ab for sam	ple(s):	01-06 Bat	ch: WG1393433-1	
CI6-BZ#153	ND		ug/kg	0.400	0.200	
CI7-BZ#170	ND		ug/kg	0.400	0.200	
CI7-BZ#180	ND		ug/kg	0.400	0.200	
CI7-BZ#183	ND		ug/kg	0.400	0.200	
CI7-BZ#184	ND		ug/kg	0.400	0.200	
CI7-BZ#187	ND		ug/kg	0.400	0.200	
Cl8-BZ#195	ND		ug/kg	0.400	0.200	
CI9-BZ#206	ND		ug/kg	0.400	0.200	
CI10-BZ#209	ND		ug/kg	0.400	0.200	

		Acceptance	
Surrogate	%Recovery	Qualifier	Criteria
2-Methylnaphthalene-d10	50		30-150
Pyrene-d10	82		30-150
Benzo(b)fluoranthene-d12	87		30-150
DBOB	77		50-125
BZ 198	87		50-125


6:52
Ξ
Я
ŝ
5
8
9
<u> </u>
Ζ.
_
a
. <u> </u>
Ð
S

Lab Control Sample Analysis Batch Quality Control

JF MORAN TERMINAL DA-JFM-200713 Project Number: Project Name:

L2029589 08/13/20 Lab Number: Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits
PAHs/PCB Congeners by GC/MS - Mansfield Lab Associated sample(s): 01-06 Batch: WG1393433-2 WG1393433-3	d Lab Associated	d sample(s):	01-06 Batch:	WG1393433-2	WG1393433-3			
Naphthalene	57		59		40-140	ę		30
Acenaphthylene	65		68		40-140	5		30
Acenaphthene	74		77		40-140	4		30
Fluorene	75		80		40-140	9		30
Phenanthrene	73		77		40-140	5		30
Anthracene	17		82		40-140	9		30
Fluoranthene	71		76		40-140	7		30
Pyrene	86		91		40-140	9		30
Benz(a)anthracene	81		85		40-140	5		30
Chrysene	89		94		40-140	5		30
Benzo(b)fluoranthene	104		107		40-140	ю		30
Benzo(k)fluoranthene	89		98		40-140	10		30
Benzo(a)pyrene	78		84		40-140	7		30
Indeno(1,2,3-cd)Pyrene	87		91		40-140	4		30
Dibenz(a,h)anthracene	86		92		40-140	7		30
Benzo(ghi)perylene	87		92		40-140	9		30
Cl2-BZ#8	81		84		40-140	4		50
Cl3-BZ#18	78		82		40-140	5		50
Cl3-BZ#28	79		83		40-140	5		50
Cl4-BZ#44	84		89		40-140	9		50
Cl4-BZ#49	83		85		40-140	2		50
Cl4-BZ#52	76		81		40-140	9		50
Cl4-BZ#66	83		87		40-140	5		50

Project Name:		JAL	Га	Lab Control Sample Analysis Batch Quality Control	ontrol Sample An Batch Quality Control	nalysis I	Ľ	Lab Number:	L2029589	
Project Number:	DA-JFM-200713						R	Report Date:	08/13/20	
Parameter		LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	, RPD	Qual	RPD Limits	
PAHs/PCB Congene	PAHs/PCB Congeners by GC/MS - Mansfield Lab Associated sample(s):	Lab Associated	l sample(s):	01-06 Batch:	Batch: WG1393433-2 WG1393433-3	-2 WG1393	433-3			
CI5-BZ#87		84		88		40-140	S	ì	50	
CI5-BZ#101		80		84		40-140	Ω		50	
CI5-BZ#105		82		87		40-140	9		50	
CI5-BZ#118		77		80		40-140	4		50	
CI6-BZ#128		84		86		40-140	2		50	
CI6-BZ#138		82		85		40-140	4		50	
CI6-BZ#153		83		86		40-140	4		50	
CI7-BZ#170		77		85		40-140	10		50	
CI7-BZ#180		79		82		40-140	4		50	
CI7-BZ#183		75		78		40-140	4		50	
CI7-BZ#184		81		84		40-140	4		50	
CI7-BZ#187		81		84		40-140	4		50	
CI8-BZ#195		85		87		40-140	2		50	
CI9-BZ#206		77		78		40-140	~		50	
CI10-BZ#209		78		81		40-140	4		50	
Su	Surrogate				LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2-Meth Pyrene Benzo(2-Methylnaphthalene-d10 Pyrene-d10 Benzo(b)fluoranthene-d12				56 83 83		57 85 87		30-150 30-150 30-150 50 155	
8Z	BZ 198				06		92		50-125	

Page 26 of 116

Ацяна

PETROLEUM HYDROCARBONS

		Serial_No	0:08132016:52
Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20
		SAMPLE RESULTS	
Lab ID: Client ID: Sample Location: Sample Depth:	L2029589-01 JFM 1-3 CHARLESTOWN, MA	Date Collected: Date Received: Field Prep:	07/13/20 09:35 07/14/20 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Sediment 135,EPH-19-2.1 08/06/20 00:12 LL 48%	Extraction Method Extraction Date: Cleanup Method1 Cleanup Date1:	07/23/20 15:15

Quality Control Information	n
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	14.9		mg/kg	13.5	13.5	1
C19-C36 Aliphatics	37.5		mg/kg	13.5	13.5	1
C11-C22 Aromatics	35.8		mg/kg	13.5	13.5	1
C11-C22 Aromatics, Adjusted	34.2		mg/kg	13.5	13.5	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	70		40-140	
o-Terphenyl	64		40-140	
2-Fluorobiphenyl	70		40-140	
2-Bromonaphthalene	73		40-140	

		ç	Serial_No:(08132016:52
Project Name:	JF MORAN TERMINAL	Lab Nu	mber:	L2029589
Project Number:	DA-JFM-200713	Report	Date:	08/13/20
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date:	L2029589-02 JFM 4-6 CHARLESTOWN, MA Sediment 135,EPH-19-2.1 08/06/20 00:36	Extraction	ceived: c: n Method:	07/13/20 11:12 07/14/20 Not Specified EPA 3546 07/23/20 15:15 EPH-04-1
Analyst: Percent Solids:	LL 50%	Cleanup	Date1:	07/23/20

Quality Control Info	rmation
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	71.3		mg/kg	12.9	12.9	1
C19-C36 Aliphatics	129		mg/kg	12.9	12.9	1
C11-C22 Aromatics	115		mg/kg	12.9	12.9	1
C11-C22 Aromatics, Adjusted	107		mg/kg	12.9	12.9	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	69		40-140	
o-Terphenyl	67		40-140	
2-Fluorobiphenyl	74		40-140	
2-Bromonaphthalene	76		40-140	

		Seria	al_No:08132016:52
Project Name:	JF MORAN TERMINAL	Lab Numbe	er: L2029589
Project Number:	DA-JFM-200713	Report Date	e: 08/13/20
		SAMPLE RESULTS	
Lab ID: Client ID: Sample Location: Sample Depth:	L2029589-03 JFM 8-10 CHARLESTOWN, MA	Date Collecte Date Receive Field Prep:	
Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Sediment 135,EPH-19-2.1 08/06/20 01:01 LL 47%	Extraction Me Extraction Da Cleanup Meth Cleanup Date	te: 07/23/20 15:15 nod1: EPH-04-1

Quality Control	Information
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Result	Qualifian				
	Qualifier	Units	RL	MDL	Dilution Factor
Westborough La	ab				
ND		mg/kg	14.2	14.2	1
30.0		mg/kg	14.2	14.2	1
46.3		mg/kg	14.2	14.2	1
42.0		mg/kg	14.2	14.2	1
	ND 30.0 46.3	30.0 46.3	ND mg/kg 30.0 mg/kg 46.3 mg/kg	ND mg/kg 14.2 30.0 mg/kg 14.2 46.3 mg/kg 14.2	ND mg/kg 14.2 14.2 30.0 mg/kg 14.2 14.2 46.3 mg/kg 14.2 14.2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	67		40-140	
o-Terphenyl	67		40-140	
2-Fluorobiphenyl	75		40-140	
2-Bromonaphthalene	78		40-140	

		Serial_	No:08132016:52
Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20
		SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L2029589-04 JFM 7 CHARLESTOWN, MA	Date Collected: Date Received: Field Prep:	07/13/20 13:32 07/14/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Sediment 135,EPH-19-2.1 08/06/20 01:26 LL 47%	Extraction Meth Extraction Date: Cleanup Method Cleanup Date1:	07/23/20 15:15

on
Satisfactory
Received on Ice
Extracted Per the Method

Result	Qualifier	Units	RL	MDL	Dilution Factor
Westborough La	ab				
28.5		mg/kg	14.1	14.1	1
59.7		mg/kg	14.1	14.1	1
38.2		mg/kg	14.1	14.1	1
38.2		mg/kg	14.1	14.1	1
	Westborough La 28.5 59.7 38.2	Westborough Lab 28.5 59.7 38.2	Westborough Lab28.5mg/kg59.7mg/kg38.2mg/kg	Westborough Lab mg/kg 14.1 28.5 mg/kg 14.1 59.7 mg/kg 14.1 38.2 mg/kg 14.1	Westborough Lab mg/kg 14.1 14.1 59.7 mg/kg 14.1 14.1 38.2 mg/kg 14.1 14.1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	67		40-140	
o-Terphenyl	63		40-140	
2-Fluorobiphenyl	70		40-140	
2-Bromonaphthalene	71		40-140	

		Serial_N	p:08132016:52
Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20
		SAMPLE RESULTS	
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L2029589-05 JFM 11 CHARLESTOWN, MA Sediment 135,EPH-19-2.1 08/06/20 01:50 LL 44%	Date Collected: Date Received: Field Prep: Extraction Methor Extraction Date: Cleanup Method? Cleanup Date1:	07/23/20 15:15

Quality Control Infor	mation
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Result	Qualifier	Units	RL	MDL	Dilution Factor
s - Westborough La	ab				
71.6		mg/kg	14.8	14.8	1
143		mg/kg	14.8	14.8	1
137		mg/kg	14.8	14.8	1
125		mg/kg	14.8	14.8	1
	s - Westborough L a 71.6 143 137	s - Westborough Lab 71.6 143 137	s - Westborough Lab 71.6 mg/kg 143 mg/kg 137 mg/kg	s - Westborough Lab mg/kg 14.8 143 mg/kg 14.8 137 mg/kg 14.8	s - Westborough Lab mg/kg 14.8 14.8 143 mg/kg 14.8 14.8 137 mg/kg 14.8 14.8

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	70		40-140	
o-Terphenyl	68		40-140	
2-Fluorobiphenyl	75		40-140	
2-Bromonaphthalene	80		40-140	

		Seria	al_No:08132016:52
Project Name:	JF MORAN TERMINAL	Lab Numbe	er: L2029589
Project Number:	DA-JFM-200713	Report Dat	e: 08/13/20
		SAMPLE RESULTS	
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	L2029589-06 JFM 12 CHARLESTOWN, MA Sediment 135,EPH-19-2.1 08/06/20 02:15 LL	Date Collecte Date Receive Field Prep: Extraction Me Extraction Da Cleanup Meth Cleanup Date	ed: 07/14/20 Not Specified ethod: EPA 3546 nte: 07/23/20 15:15 nod1: EPH-04-1
Percent Solids:	44%		

Condition of sample received:	Satisfactory
	Salislacioly
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Result	Qualifier	Units	RL	MDL	Dilution Factor
s - Westborough L	ab				
18.1		mg/kg	14.3	14.3	1
51.5		mg/kg	14.3	14.3	1
26.8		mg/kg	14.3	14.3	1
26.8		mg/kg	14.3	14.3	1
	5 - Westborough La 18.1 51.5 26.8	a- Westborough Lab 18.1 51.5 26.8	and the second secon	S - Westborough Lab mg/kg 14.3 51.5 mg/kg 14.3 26.8 mg/kg 14.3	initial mg/kg 14.3 14.3 51.5 mg/kg 14.3 14.3 26.8 mg/kg 14.3 14.3

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	80		40-140	
o-Terphenyl	66		40-140	
2-Fluorobiphenyl	70		40-140	
2-Bromonaphthalene	72		40-140	

Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20

Method Blank Analysis Batch Quality Control

Analytical Method:	135,EPH-19-2.1
Analytical Date:	08/05/20 23:47
Analyst:	LL

Extraction Method:EPA 3546Extraction Date:07/23/20 15:15Cleanup Method:EPH-04-1Cleanup Date:07/23/20

arameter	Result	Qualifier	Units	RL	MDL	-
xtractable Petroleum Hydrocar	bons - Westbo	rough Lab f	or sample(s):	01-06	Batch:	WG1395060-1
C9-C18 Aliphatics	ND		mg/kg	6.58	6.5	8
C19-C36 Aliphatics	ND		mg/kg	6.58	6.5	8
C11-C22 Aromatics	ND		mg/kg	6.58	6.5	8
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.58	6.5	8

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Chloro-Octadecane	64	40-140
o-Terphenyl	57	40-140
2-Fluorobiphenyl	74	40-140
2-Bromonaphthalene	77	40-140

16:52
81320
No:0
Serial

Lab Control Sample Analysis Batch Quality Control

Project Name: JF MORAN TERMINAL Project Number: DA-JFM-200713

 Lab Number:
 L2029589

 Report Date:
 08/13/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westborough Lab Associat	stborough Lab Ass	ociated samp	ed sample(s): 01-06 B	atch: WG139	Batch: WG1395060-2 WG1395060-3	95060-3		
C9-C18 Aliphatics	56		60		40-140	7		25
C19-C36 Aliphatics	73		62		40-140	8		25
C11-C22 Aromatics	60		69		40-140	14		25
Naphthalene	54		63		40-140	15		25
2-Methylnaphthalene	56		65		40-140	15		25
Acenaphthylene	54		63		40-140	15		25
Acenaphthene	59		68		40-140	14		25
Fluorene	58		68		40-140	16		25
Phenanthrene	58		68		40-140	16		25
Anthracene	59		20		40-140	17		25
Fluoranthene	61		72		40-140	17		25
Pyrene	60		20		40-140	15		25
Benzo(a)anthracene	59		69		40-140	16		25
Chrysene	60		20		40-140	15		25
Benzo(b)fluoranthene	58		68		40-140	16		25
Benzo(k)fluoranthene	58		68		40-140	16		25
Benzo(a)pyrene	57		66		40-140	15		25
Indeno(1,2,3-cd)Pyrene	56		64		40-140	13		25
Dibenzo(a,h)anthracene	59		68		40-140	14		25
Benzo(ghi)perylene	54		62		40-140	14		25

\sim
ìð
7.
G
Ξ
S.
~
<u> </u>
ò
×
<u>.</u>
0
Z
Ъ
÷Ĕ
Ð
ñ
••

Lab Control Sample Analysis

Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20

rotomered	LCS	JenO	LCSD %Recoverv		%Recovery Limits	γ.	JenO	RPD Limits	
		Auai	Giocopo int	200			<u>Aua</u>		I
Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-06 Batch: WG1395060-2 WG1395060-3	Westborough Lab Ass	ociated sam	ple(s): 01-06	Batch: WG13	95060-2	NG1395060-3			
				TCS		LCSD		Acceptance	
Surrogate				%Recovery Qual	Qual	%Recovery	Qual	Criteria	I
Chloro-Octadecane				64		71		40-140	
o-Terphenyl				56		65		40-140	
2-Fluorobiphenyl				72		76		40-140	
2-Bromonaphthalene				76		79		40-140	
% Naphthalene Breakthrough	gh			0		0			
% 2-Methylnaphthalene Breakthrough	sakthrough			0		0			

METALS

Project Name:	JF MO	ORAN TER	MINAL				Lab Nu	mber:	L202958	39	
Project Number:							Report	Date:	08/13/20		
	_,, , ,			SAMPL	E RES	JLTS			00, 10, E	-	
Lab ID: Client ID: Sample Location:	JFM 1	9589-01 -3 RLESTOWN	N, MA				Date Co Date Re Field Pr	ceived:	07/13/20 07/14/20 Not Spec		
Sample Depth: Matrix: Percent Solids:	Sedim 48%	nent				Dilution	Data	Data	Dron	Applytical	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
				400	00.0	40	07/00/00 40 00	07/00/00 44.07		1,6020B	A N 4
Aluminum, Total	12500		mg/kg	136	20.2	10		5 07/30/20 11:07			AM
Antimony, Total	0.942	J	mg/kg	2.18	0.184	10		5 07/30/20 11:07		1,6020B	AM
Arsenic, Total	14.7		mg/kg	0.682	0.090	10		5 07/30/20 11:07		1,6020B	AM
Barium, Total	67.4		mg/kg	4.09	0.288	10		5 07/30/20 11:07		1,6020B	AM
Beryllium, Total	0.547		mg/kg	0.409	0.119	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Cadmium, Total	1.21		mg/kg	0.273	0.036	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Calcium, Total	6180		mg/kg	682	82.9	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Chromium, Total	113		mg/kg	2.73	0.638	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Cobalt, Total	8.67		mg/kg	0.682	0.073	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Copper, Total	112		mg/kg	2.73	0.264	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Iron, Total	28800		mg/kg	273	28.1	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Lead, Total	146		mg/kg	0.818	0.199	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Magnesium, Total	7720		mg/kg	136	16.8	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Manganese, Total	287		mg/kg	2.73	0.605	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Mercury, Total	0.629		mg/kg	0.020	0.003	5	07/24/20 17:30	07/31/20 17:05	EPA 7474	1,7474	ТМ
Nickel, Total	23.3		mg/kg	1.36	0.364	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Potassium, Total	4330		mg/kg	136	21.6	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Selenium, Total	4.33		mg/kg	2.73	1.03	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Silver, Total	2.01		mg/kg	0.682	0.067	10		5 07/30/20 11:07		1,6020B	AM
Sodium, Total	10900		mg/kg	204	16.0	10	07/29/20 19:25	5 07/30/20 11:07	EPA 3050B	1,6020B	AM
Thallium, Total	0.318	J	mg/kg	1.09	0.070	10		5 07/30/20 11:07		1,6020B	AM
Vanadium, Total	53.7	-	mg/kg	1.36	0.517	10		5 07/30/20 11:07		1,6020B	AM
Zinc, Total	247		mg/kg	13.6	3.54	10		5 07/30/20 11:07		1,6020B	AM
				.0.0	0.04	10	51720720 10.20		,	.,	,

Lab ID: Client ID: Sample Location: Sample Depth:	JFM 4	-M-200713 9589-02 9-6 8LESTOWN		SAMPL	E RESI	ULTS	Report I Date Col Date Rec Field Pre	lected: ceived:	08/13/20 07/13/20 07/14/20 Not Spec	11:12	
Matrix:	Sedim	nent									
Percent Solids:	50%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	10400		mg/kg	130	19.2	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Antimony, Total	1.36	J	mg/kg	2.07	0.175	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Arsenic, Total	13.7		mg/kg	0.648	0.086	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Barium, Total	75.2		mg/kg	3.89	0.274	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Beryllium, Total	0.497		mg/kg	0.389	0.113	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Cadmium, Total	1.77		mg/kg	0.259	0.034	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Calcium, Total	4460		mg/kg	648	78.8	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Chromium, Total	141		mg/kg	2.59	0.607	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Cobalt, Total	7.18		mg/kg	0.648	0.069	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Copper, Total	109		mg/kg	2.59	0.252	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Iron, Total	23900		mg/kg	259	26.7	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Lead, Total	204		mg/kg	0.778	0.189	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Magnesium, Total	6390		mg/kg	130	16.0	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Manganese, Total	248		mg/kg	2.59	0.576	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Mercury, Total	0.864		mg/kg	0.015	0.002	5	07/24/20 17:30	07/31/20 17:07	EPA 7474	1,7474	TM
Nickel, Total	21.8		mg/kg	1.30	0.346	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Potassium, Total	3520		mg/kg	130	20.6	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Selenium, Total	3.70		mg/kg	2.59	0.980	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Silver, Total	2.40		mg/kg	0.648	0.063	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Sodium, Total	10200		mg/kg	194	15.2	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Thallium, Total	0.290	J	mg/kg	0.519	0.067	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Vanadium, Total	56.4		mg/kg	1.30	0.492	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM
Zinc, Total	262		mg/kg	13.0	3.37	10	07/29/20 19:25	07/30/20 11:12	EPA 3050B	1,6020B	AM

Project Name: Project Number: Lab ID: Client ID: Sample Location: Sample Depth: Matrix:	DA-JF L2029 JFM 8	RLESTOWN		SAMPL	E RESI	JLTS	Lab Nur Report I Date Co Date Re Field Pre	Date: llected: ceived:	L202958 08/13/20 07/13/20 07/14/20 Not Spec) 12:45	
Percent Solids:	47%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	11000		mg/kg	143	21.2	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Antimony, Total	0.700	J	mg/kg	2.29	0.194	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Arsenic, Total	14.0		mg/kg	0.717	0.095	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Barium, Total	59.0		mg/kg	4.30	0.303	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Beryllium, Total	0.565		mg/kg	0.430	0.125	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Cadmium, Total	1.54		mg/kg	0.287	0.038	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Calcium, Total	5810		mg/kg	717	87.2	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Chromium, Total	91.9		mg/kg	2.87	0.671	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Cobalt, Total	7.57		mg/kg	0.717	0.076	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Copper, Total	83.2		mg/kg	2.87	0.278	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Iron, Total	24500		mg/kg	287	29.5	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Lead, Total	106		mg/kg	0.860	0.209	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Magnesium, Total	6980		mg/kg	143	17.7	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Manganese, Total	269		mg/kg	2.87	0.636	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Mercury, Total	0.696		mg/kg	0.020	0.003	5	07/24/20 17:30	07/31/20 17:10	EPA 7474	1,7474	ТМ
Nickel, Total	20.4		mg/kg	1.43	0.383	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Potassium, Total	3980		mg/kg	143	22.8	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Selenium, Total	3.72		mg/kg	2.87	1.08	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Silver, Total	1.73		mg/kg	0.717	0.070	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Sodium, Total	9560		mg/kg	215	16.8	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Thallium, Total	0.286	J	mg/kg	0.573	0.074	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Vanadium, Total	46.4		mg/kg	1.43	0.544	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM
Zinc, Total	180		mg/kg	14.3	3.73	10	07/29/20 19:25	07/30/20 11:17	EPA 3050B	1,6020B	AM

								••••••			
Project Name:	JF MO	ORAN TER	MINAL				Lab Nur	nber:	L20295	89	
Project Number:	DA-JI						Report I	Date:	08/13/2	C	
				SAMPL	E RES	ULTS					
Lab ID:		9589-04 -					Date Co		07/13/20	13:32	
Client ID:	JFM 7						Date Re		07/14/20	: (;]	
Sample Location:	CHAP	RLESTOWN	N, MA				Field Pre	ep:	Not Spec	cified	
Sample Depth:											
Matrix:	Sedim	nent									
Percent Solids:	47%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	14900		mg/kg	137	20.3	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Antimony, Total	0.664	J	mg/kg	2.20	0.186	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Arsenic, Total	14.2		mg/kg	0.687	0.091	10		07/30/20 11:22		1,6020B	AM
Barium, Total	82.6		mg/kg	4.12	0.290	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Beryllium, Total	0.718		mg/kg	0.412	0.120	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Cadmium, Total	2.25		mg/kg	0.275	0.036	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Calcium, Total	5960		mg/kg	687	83.6	10	07/29/20 19:25			1,6020B	AM
Chromium, Total	165		mg/kg	2.75	0.643	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Cobalt, Total	9.96		mg/kg	0.687	0.073	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Copper, Total	121		mg/kg	2.75	0.267	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Iron, Total	30500		mg/kg	275	28.3	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Lead, Total	119		mg/kg	0.824	0.201	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Magnesium, Total	8840		mg/kg	137	16.9	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Manganese, Total	334		mg/kg	2.75	0.610	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Mercury, Total	0.863		mg/kg	0.019	0.002	5	07/24/20 17:30	07/31/20 17:12	EPA 7474	1,7474	ТМ
Nickel, Total	29.2		mg/kg	1.37	0.367	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Potassium, Total	5340		mg/kg	137	21.8	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Selenium, Total	5.21		mg/kg	2.75	1.04	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Silver, Total	4.48		mg/kg	0.687	0.067	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Sodium, Total	17200		mg/kg	206	16.1	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Thallium, Total	0.394	J	mg/kg	0.550	0.071	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Vanadium, Total	68.0		mg/kg	1.37	0.521	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM
Zinc, Total	215		mg/kg	13.7	3.57	10	07/29/20 19:25	07/30/20 11:22	EPA 3050B	1,6020B	AM

Project Name:	JF MO	ORAN TER	MINAL				Lab Nur	nber:	L202958	89	
Project Number:	DA-JF						Report	Date:	08/13/20	C	
Lab ID: Client ID: Sample Location:	JFM 1	9589-05 1 RLESTOWN	N, MA	SAMPL	E RES	ULTS	Date Co Date Re Field Pre	ceived:	07/13/20 07/14/20 Not Spec		
Sample Depth: Matrix: Percent Solids:	Sedim 44%	nent				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	16400		mg/kg	208	30.7	10	07/20/20 10:25	07/30/20 12:16		1,6020B	AM
	1.69			3.32	0.281	10		07/30/20 12:16		1,6020B	AM
Antimony, Total		J	mg/kg							1,6020B	
Arsenic, Total	21.5 96.6		mg/kg	1.04 6.23	0.137	10 10		07/30/20 12:16		1,6020B	AM AM
Barium, Total			mg/kg							1,6020B	
Beryllium, Total	0.759		mg/kg	0.623	0.181	10		07/30/20 12:16		1,6020B	AM
Cadmium, Total Calcium, Total	1.93 6110		mg/kg mg/kg	0.415 1040	0.055 126.	10 10		07/30/20 12:16		1,6020B	AM AM
Chromium, Total	164		mg/kg	4.15	0.971	10		07/30/20 12:16		1,6020B	AM
Cobalt, Total	11.5			1.04	0.110	10				1,6020B	AM
·	145		mg/kg		0.110	10		07/30/20 12:16		1,6020B	AM
Copper, Total	39200		mg/kg mg/kg	4.15 415	42.8	10		07/30/20 12:16		1,6020B	AM
Lead, Total	234			1.24	0.303	10				1,6020B	AM
	10300		mg/kg	208	25.6	10		07/30/20 12:16		1,6020B	AM
Magnesium, Total Manganese, Total	400		mg/kg mg/kg	4.15	0.922	10		07/30/20 12:16		1,6020B	AM
	0.695			0.019	0.922	5				1,7474	TM
Mercury, Total			mg/kg					07/31/20 17:15		1,6020B	
Nickel, Total	33.8		mg/kg	2.08 208	0.554	10		07/30/20 12:16		1,6020B	AM
Potassium, Total	5900		mg/kg		33.0	10				1,6020B	AM
Selenium, Total Silver, Total	5.69 2.81		mg/kg	4.15 1.04	1.57	10		07/30/20 12:16		1,6020B	AM AM
· · · · · · · · · · · · · · · · · · ·	19500		mg/kg	311	0.101	10		07/30/20 12:16		1,6020B	
Sodium, Total			mg/kg		24.3	10					AM
Thallium, Total	0.486	J	mg/kg	0.830	0.107	10		07/30/20 12:16		1,6020B	AM
Vanadium, Total	78.4		mg/kg	2.08	0.787	10		07/30/20 12:16		1,6020B	AM
Zinc, Total	334		mg/kg	20.8	5.40	10	07/29/20 19:25	07/30/20 12:16	EPA 3050B	1,6020B	AM

Project Name:	JF MO	ORAN TER	MINAL				Lab Nu	mber:	L20295	89	
Project Number:	DA-JF	FM-200713					Report	Date:	08/13/20	C	
Lab ID: Client ID: Sample Location:	JFM 1	9589-06 2 RLESTOWN	N, MA	SAMPL	E RES	ULTS	Date Co Date Re Field Pre	ceived:	07/13/20 07/14/20 Not Spec		
Sample Depth: Matrix: Percent Solids:	Sedim 44%	nent				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	16900		mg/kg	169	25.0	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Antimony, Total	0.932	J	mg/kg	2.71	0.229	10		07/30/20 12:21		1,6020B	AM
Arsenic, Total	18.7		mg/kg	0.846	0.112	10		07/30/20 12:21		1,6020B	AM
Barium, Total	83.9		mg/kg	5.07	0.357	10		07/30/20 12:21		1,6020B	AM
Beryllium, Total	0.759		mg/kg	0.507	0.148	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Cadmium, Total	2.09		mg/kg	0.338	0.045	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Calcium, Total	6810		mg/kg	846	103.	10	07/29/20 19:25	; 07/30/20 12:21	EPA 3050B	1,6020B	AM
Chromium, Total	154		mg/kg	3.38	0.792	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Cobalt, Total	11.4		mg/kg	0.846	0.090	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Copper, Total	137		mg/kg	3.38	0.328	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Iron, Total	36000		mg/kg	338	34.8	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Lead, Total	150		mg/kg	1.01	0.247	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Magnesium, Total	10500		mg/kg	169	20.8	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Manganese, Total	395		mg/kg	3.38	0.751	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Mercury, Total	0.712		mg/kg	0.020	0.003	5	07/24/20 17:30	07/31/20 17:17	EPA 7474	1,7474	ТМ
Nickel, Total	32.8		mg/kg	1.69	0.452	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Potassium, Total	6150		mg/kg	169	26.9	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Selenium, Total	5.38		mg/kg	3.38	1.28	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Silver, Total	3.61		mg/kg	0.846	0.083	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Sodium, Total	14800		mg/kg	254	19.8	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Thallium, Total	0.481	J	mg/kg	0.677	0.087	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Vanadium, Total	77.5		mg/kg	1.69	0.641	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM
Zinc, Total	255		mg/kg	16.9	4.40	10	07/29/20 19:25	07/30/20 12:21	EPA 3050B	1,6020B	AM

Project Name:JF MORAN TERMINALProject Number:DA-JFM-200713

 Lab Number:
 L2029589

 Report Date:
 08/13/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01-06 B	atch: W	G139479	93-1				
Aluminum, Total	ND	mg/kg	100	14.8	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Antimony, Total	ND	mg/kg	1.60	0.135	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Arsenic, Total	ND	mg/kg	0.500	0.066	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Barium, Total	ND	mg/kg	3.00	0.211	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Beryllium, Total	ND	mg/kg	0.300	0.087	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Cadmium, Total	ND	mg/kg	0.200	0.026	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Calcium, Total	ND	mg/kg	500	60.8	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Chromium, Total	ND	mg/kg	2.00	0.468	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Cobalt, Total	ND	mg/kg	0.500	0.053	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Copper, Total	ND	mg/kg	2.00	0.194	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Iron, Total	ND	mg/kg	200	20.6	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Lead, Total	ND	mg/kg	0.600	0.146	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Magnesium, Total	ND	mg/kg	100	12.3	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Manganese, Total	ND	mg/kg	2.00	0.444	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Nickel, Total	ND	mg/kg	1.00	0.267	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Potassium, Total	ND	mg/kg	100	15.9	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Selenium, Total	ND	mg/kg	2.00	0.756	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Silver, Total	ND	mg/kg	0.500	0.049	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Sodium, Total	ND	mg/kg	150	11.7	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Thallium, Total	0.070 J	mg/kg	0.400	0.052	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Vanadium, Total	ND	mg/kg	1.00	0.379	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM
Zinc, Total	ND	mg/kg	10.0	2.60	10	07/29/20 19:25	07/30/20 09:32	1,6020B	AM

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01-06 B	atch: W	G13954	43-1				
Mercury, Total	ND	mg/kg	0.013	0.002	5	07/24/20 17:30	07/31/20 15:27	1,7474	ТМ

Project Name: JF MORAN TERMINAL

Project Number: DA-JFM-200713

 Lab Number:
 L2029589

 Report Date:
 08/13/20

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7474

Project Name: JF MORAN TERMINAL Project Number: DA-JFM-200713	-	Lat	o Contro Batch	Lab Control Sample Analysis Batch Quality Control	alysis	Lab Nu Repor	Lab Number: Report Date:	L2029589 08/13/20	
	LCS %Beroverv		LCSD KRecovery	č	%Recovery Limits		Ċ	L DOD	
Total Metals - Mansfield Lab Associated sample(s): 01-06		Batch: WG1394793-2	S	Lot	0109-540		Kua		
Aluminum, Total	71				50-150			20	
Antimony, Total	160		ı		19-250	ı		20	
Arsenic, Total	104		•		70-130			20	
Barium, Total	100				75-125			20	
Beryllium, Total	104		•		75-125	ı		20	
Cadmium, Total	98		•		75-125	ı		20	
Calcium, Total	100		•		73-128	ı		20	
Chromium, Total	100				70-130			20	
Cobalt, Total	106		•		75-125	ı		20	
Copper, Total	102				75-125			20	
Iron, Total	114				35-165	ı		20	
Lead, Total	98		ı		72-128	ı		20	
Magnesium, Total	96				62-138			20	
Manganese, Total	104		·		74-126	ı		20	
Nickel, Total	103				70-130			20	
Potassium, Total	06				59-141			20	
Selenium, Total	104				68-132	ı		20	
Silver, Total	102				68-131	ı		20	
Sodium, Total	98				35-165			20	
Thallium, Total	111		ı		68-131	ı		20	
Vanadium, Total	103				59-141	ı		20	

Page 46 of 116

Ацена

16:52
1320
No:08
Serial

Lab Control Sample Analysis Batch Quality Control

Project Name:	JF MORAN TERMINAL	Lab Number:	L2029589
Project Number:	DA-JFM-200713	Report Date:	08/13/20

Parameter	LCS %Recovery	LCSD %Recovery		%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-06 Batch:	s): 01-06 E		WG1394793-2 SRM Lot Number: D109-540	1-540		
Zinc, Total	102			70-130		20
Total Metals - Mansfield Lab Associated sample(s): 01-06 Batch:	s): 01-06		WG1395443-2 SRM Lot Number: D109-540	1-540		
Mercury, Total	131			60-140	•	20

INORGANICS & MISCELLANEOUS

L2029589

08/13/20

Lab Number:

Report Date:

Project Name: JF MORAN TERMINAL

Project Number: DA-JFM-200713

SAMPLE RESULTS

Lab ID:	L2029589-01	Date Collected:	07/13/20 09:35
Client ID:	JFM 1-3	Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	2.18		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Rep2)	2.83		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Average)	2.50		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Grain Size Analysis - Mans	field Lab									
Cobbles	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	B GD
% Coarse Gravel	8.20		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	B GD
% Fine Gravel	4.20		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Gravel	12.4		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Sand	16.9		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Medium Sand	22.3		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Sand	17.5		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Sand	56.7		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Fines	30.9		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
General Chemistry - Mansfi	eld Lab									
Solids, Total	47.6		%	0.100	0.100	1	-	07/16/20 08:39	121,2540G	KM

L2029589

08/13/20

Lab Number:

Report Date:

Project Name:	JF MORAN TERMINAL
Froject Name.	JF MORAN TERMINAL

Project Number: DA-JFM-200713

SAMPLE RESULTS

Lab ID:	L2029589-02	Date Collected:	07/13/20 11:12
Client ID:	JFM 4-6	Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	3.93		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Rep2)	4.15		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Average)	4.04		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Grain Size Analysis - Mans	field Lab									
Cobbles	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Gravel	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Gravel	0.200		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Gravel	0.200		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Sand	8.90		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Medium Sand	15.5		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Sand	18.8		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Sand	43.2		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Fines	56.6		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
General Chemistry - Mansf	eld Lab									
Solids, Total	49.8		%	0.100	0.100	1	-	07/16/20 08:39	121,2540G	KM

L2029589

08/13/20

Lab Number:

Report Date:

Project Name:	JF MORAN TERMINAL
Project Name:	JF MORAN TERMINA

Project Number: DA-JFM-200713

SAMPLE RESULTS

Lab ID:	L2029589-03	Date Collected:	07/13/20 12:45
Client ID:	JFM 8-10	Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	8.73		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Rep2)	4.27		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Average)	6.50		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Grain Size Analysis - Mansfield Lab										
Cobbles	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Coarse Gravel	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Fine Gravel	1.10		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Total Gravel	1.10		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Coarse Sand	14.2		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Medium Sand	17.9		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Fine Sand	20.4		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Total Sand	52.5		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
% Total Fines	46.4		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
General Chemistry - Mansf	ield Lab									
Solids, Total	46.6		%	0.100	0.100	1	-	07/16/20 08:39	121,2540G	KM

L2029589

08/13/20

Lab Number:

Report Date:

Project Name:	JF MORAN TERMINAL

Project Number: DA-JFM-200713

SAMPLE RESULTS

Lab ID:	L2029589-04	Date Collected:	07/13/20 13:32
Client ID:	JFM 7	Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	3.23		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Rep2)	3.51		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Average)	3.37		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Grain Size Analysis - Mans	field Lab									
Cobbles	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Gravel	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Gravel	1.40		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Gravel	1.40		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Sand	9.90		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Medium Sand	19.2		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Sand	15.4		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Sand	44.5		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Fines	54.1		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
General Chemistry - Mansfi	eld Lab									
Solids, Total	46.5		%	0.100	0.100	1	-	07/16/20 08:39	121,2540G	KM

L2029589

08/13/20

Lab Number:

Report Date:

Project Name:	JF MORAN TERMINAL
•	•••••••

Project Number: DA-JFM-200713

SAMPLE RESULTS

Lab ID:	L2029589-05	Date Collected:	07/13/20 14:25
Client ID:	JFM 11	Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	2.71		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Rep2)	2.63		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Average)	2.67		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Grain Size Analysis - Mans	field Lab									
Cobbles	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	B GD
% Coarse Gravel	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Gravel	1.40		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Gravel	1.40		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Sand	11.3		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Medium Sand	18.1		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Sand	24.7		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Sand	54.1		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Fines	44.5		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	GD GD
General Chemistry - Mansf	ield Lab									
Solids, Total	43.8		%	0.100	0.100	1	-	07/16/20 08:39	121,2540G	KM

L2029589

08/13/20

Lab Number:

Report Date:

Project Name: JF MORAN TERMINAL

Project Number: DA-JFM-200713

SAMPLE RESULTS

Lab ID:	L2029589-06	Date Collected:	07/13/20 13:50
Client ID:	JFM 12	Date Received:	07/14/20
Sample Location:	CHARLESTOWN, MA	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	3.19		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Rep2)	2.58		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Average)	2.89		%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Grain Size Analysis - Mans	field Lab									
Cobbles	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Gravel	ND		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Gravel	0.700		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Gravel	0.700		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Coarse Sand	11.7		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Medium Sand	17.5		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Fine Sand	21.5		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Sand	50.7		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
% Total Fines	48.6		%	0.100	NA	1	-	08/03/20 11:35	12,D6913/D7928	3 GD
General Chemistry - Mansfi	ield Lab									
Solids, Total	44.3		%	0.100	0.100	1	-	07/16/20 08:39	121,2540G	KM

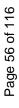
Project Name:JF MORAN TERMINALProject Number:DA-JFM-200713

 Lab Number:
 L2029589

 Report Date:
 08/13/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab for samp	ole(s): 01-	06 Bato	ch: WG	1393258-1				
Total Organic Carbon (Rep1)	ND	%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Rep2)	ND	%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP
Total Organic Carbon (Average)	ND	%	0.010	0.010	1	-	07/27/20 09:01	1,9060A	SP



L2029589 08/13/20

Lab Control Sample Analysis Batch Quality Control

Lab Number: Report Date: JF MORAN TERMINAL DA-JFM-200713 Project Number: Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery Qual	Qual	%Recovery Limits	RPD	RPD Qual	RPD Limits
Total Organic Carbon - Mansfield Lab Associated sample(s): 01	iated sample(s):		-06 Batch: WG1393258-2	8-2				
Total Organic Carbon (Rep1)	109				75-125			25
Total Organic Carbon (Rep2)	102				75-125			25
Total Organic Carbon (Average)	105				75-125			25

Lab Duplicate Analysis Batch Quality Control

Project Name: JF MORAN TERMINAL Project Number:

DA-JFM-200713

Lab Number: Report Date:

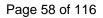
L2029589 08/13/20

Native Sample **Duplicate Sample** Units RPD Qual **RPD Limits** Parameter General Chemistry - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG1392791-1 QC Sample: L2029589-01 Client ID: JFM 1-3 Solids, Total 47.6 47.8 % 0 10 Grain Size Analysis - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG1394358-1 QC Sample: L2029589-02 Client ID: JFM 4-6 Cobbles ND ND % NC 20 % Coarse Gravel ND ND % NC 20 % Fine Gravel 0.200 0.200 % 0 20 % Total Gravel 0.200 0.200 % 0 20 % Coarse Sand 8.90 8.10 % 20 9 % Medium Sand % Q 20 15.5 19.1 21 % Fine Sand 22.1 % 20 18.8 16 % Total Sand 43.2 % 13 20 49.3 % 20 % Total Fines 56.6 50.5 11

Project Name:JF MORAN TERMINALProject Number:DA-JFM-200713

Serial_No:08132016:52 *Lab Number:* L2029589 *Report Date:* 08/13/20

Sample Receipt and Container Information


Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2029589-01A	Vial MeOH preserved	А	NA		4.8	Y	Absent		-
L2029589-01B	Vial water preserved	А	NA		4.8	Y	Absent	14-JUL-20 22:00	-
L2029589-01C	Vial water preserved	А	NA		4.8	Y	Absent	14-JUL-20 22:00	-
L2029589-01D	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)
L2029589-01E	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		SUB-8260HLW(2),A2-TS(7)
L2029589-01F	Glass 60mL/2oz unpreserved	A	NA		4.8	Y	Absent		A2-FE-6020T(180),A2-PB-6020T(180),A2-BA- 6020T(180),A2-ZN-6020T(180),SUB- 8260HLW(2),A2-NI-6020T(180),A2-SB- 6020T(180),A2-CR-6020T(180),A2-TL- 6020T(180),A2-CR-6020T(180),A2-TL- 6020T(180),A2-CO-6020T(180),A2-AS- 6020T(180),A2-CO-6020T(180),A2-CD- 6020T(180),A2-BE-6020T(180),A2-V- 6020T(180),A2-HGPREP-AF(28),A2-SE- 6020T(180),A2-HGPREP-AF(28),A2-SE- 6020T(180),A2-HG-6020T(180),A2-PREP- 3050:2T(180),A2-CL-6020T(180),A2-CA- 6020T(180),A2-NA-6020T(180),A2-CA- 6020T(180),A2-NA-6020T(180),A2-PREP- 3050:1T(180)
L2029589-01G	Glass 120ml/4oz unpreserved	А	NA		4.8	Y	Absent		SUB-8260HLW(2),A2-TOC-9060- 2REPS(28),A2-PAH/PCBCONG(14)
L2029589-01H	Plastic 8oz unpreserved for Grain Size	A	NA		4.8	Y	Absent		A2-HYDRO-TFINE(),A2-HYDRO-FSAND(),A2- HYDRO-CGRAVEL(),A2-HYDRO- MSAND(),A2-HYDRO-TGRAVEL(),A2-HYDRO- CSAND(),A2-HYDRO-TSAND(),A2-HYDRO- COBBLES(),A2-HYDRO-FGRAVEL()
L2029589-01J	Glass 250ml/8oz unpreserved	А	NA		4.8	Y	Absent		EPH-20(14)
L2029589-02A	Vial MeOH preserved	А	NA		4.8	Y	Absent		
L2029589-02B	Vial water preserved	А	NA		4.8	Y	Absent	14-JUL-20 22:00	
L2029589-02C	Vial water preserved	А	NA		4.8	Y	Absent	14-JUL-20 22:00	-
L2029589-02D	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)
L2029589-02E	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		SUB-8260HLW(2),A2-TS(7)

p C Pres Seal Date/Time Analysis(*)	Y Absent A2-FE-6020T(180),A2-PB-6020T(180),A2-SB- 6020T(180),A2-BA-6020T(180),A2-NI- 6020T(180),A2-HG-7474T(28),A2-NI- 6020T(180),A2-HG-7474T(28),A2-K- 6020T(180),A2-CD-6020T(180),A2-KI- 6020T(180),A2-CD-6020T(180),A2-NI- 6020T(180),A2-A5-6020T(180),A2-NG- 6020T(180),A2-CD-6020T(180),A2-NG- 6020T(180),	Y Absent SUB-8260HLW(2),A2-TOC-9060- 2REPS(28),A2-PAH/PCBCONG(14)	Y Absent A2-HYDRO-TFINE (),A2-HYDRO- CGRAVEL (),A2-HYDRO-FSAND (),A2-HYDRO- MSAND (),A2-HYDRO-TGRAVEL (),A2-HYDRO- CSAND (),A2-HYDRO-TSAND (),A2-HYDRO- COBBLES (),A2-HYDRO-FGRAVEL ()	Y Absent EPH-20(14)	Y Absent -	Y Absent 14-JUL-20 22:00 -	Y Absent 14-JUL-20 22:00 -	Y Absent A2-TS(7)	Y Absent SUB-8260HLW(2),A2-TS(7)	Y Absent A2-FE-6020T(180),A2-PB-6020T(180),A2-ZN- 6020T(180),A2-NI-6020T(180),A2-SB- 6020T(180),A2-NI-6020T(180),A2-SF- 6020T(180),A2-HG-747T(28),A2-K- 6020T(180),A2-HG-747T(28),A2-K- 6020T(180),A2-NG-6020T(180),A2-SF- 6020T(180),A2-MG- 6020T(180),A2-MG- 6020T(180),A2-MG- 6020T(180),A2-MG- 6020T(180),A2-SE-6020T(180),A2-PREP- 3050:2T(180),A2-SE-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 6020T(180),A2-NA-6020T(180),A2-PREP- 6020T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(180),A2-NA-6020T(180),A2-PREP- 3050:2T(180),A2-NA-6020T(1	Y Absent SUB-8260HLW(2),A2-TOC-9060- 2REPS(28),A2-PAH/PCBCONG(14)
al Final Temp pH deg C		4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8		4.8
Initial er pH	4 Z	ΝA	NA	NA	NA	NA	NA	NA	NA	Y Z	NA
Cooler	۲	A	i Size A	А	A	۲	A	A	۲	۲	A
ormation Container Type	Glass 60mL/2oz unpreserved	Glass 120ml/4oz unpreserved	Plastic 8oz unpreserved for Grain Size	Glass 250ml/8oz unpreserved	Vial MeOH preserved	Vial water preserved	Vial water preserved	Plastic 2oz unpreserved for TS	Plastic 2oz unpreserved for TS	Glass 60mL/2oz unpreserved	Glass 120ml/4oz unpreserved
Container Information Container ID Contai	L2029589-02F	L2029589-02G	L2029589-02H	L2029589-02J	L2029589-03A	L2029589-03B	L2029589-03C	L2029589-03D	L2029589-03E	L2029589-03F	L2029589-03G

JF MORAN TERMINAL

Project Name:

*Values in parentheses indicate holding time in days

Page 59 of 116

Lab Number: L2029589 Report Date: 08/13/20	Analysis(*)	A2-HYDRO-TFINE (),A2-HYDRO-FSAND (),A2- HYDRO-CGRAVEL (),A2-HYDRO- MSAND (),A2-HYDRO-TGRAVEL (),A2-HYDRO- CSAND (),A2-HYDRO-TSAND (),A2-HYDRO- COBBLES (),A2-HYDRO-FGRAVEL ()	EPH-20(14)	A2-TS(7)	EPH-20(14)	A2-FE-6020T(180),A2-BA-6020T(180),A2-ZN- 6020T(180),A2-HG-7474T(28),A2-K- 6020T(180),A2-CR-6020T(180),A2-TL- 6020T(180),A2-CD-6020T(180),A2-AS- 6020T(180),A2-CD-6020T(180),A2-N- 6020T(180),A2-REP-3050:2T(180),A2-HC- 9060-2REPS(28),A2-PREP-3050:2T(180),A2- 6020T(180),A2-PREP-3050:2T(180),A2- 6020T(180),A2-PREP-3050:2T(180),A2- 6020T(180),A2-PAH/PCBCONG(14),A2-CA- 6020T(180),A2-PAH/PCBCONG(14),A2- 6020T(180),A2-PAH/PCBCONG(14),A2- 6020T(180),A2-PAH/PCBCONG(14),A2- 6020T(180),A2-PAH/PCBCONG(14),A2- 6020T(180),A2-PAH/PCBCONG(14),A2- 6020T(180),A2-PAH/PCBCONG(14),A2- 6020T(180),A2-PAH/PCBCONG(14),A2- 6020T(180),A2- 6020T(180),A2-PAH/PCBC	A2-HYDRO-TFINE(),A2-HYDRO- CGRAVEL(),A2-HYDRO-FSAND(),A2-HYDRO- MSAND(),A2-HYDRO-TGRAVEL(),A2-HYDRO- CSAND(),A2-HYDRO-TSAND(),A2-HYDRO- FGRAVEL(),A2-HYDRO-COBBLES()	SUB-8260HLW(2)	SUB-8260HLW(2)	SUB-8260HLW(2)	A2-TS(7)	EPH-20(14)	A2-PB-6020T(180),A2-FE-6020T(180),A2-ZN- 6020T(180),A2-NI-6020T(180),A2-BA- 6020T(180),A2-SB-6020T(180),A2-HG- 7474T(28),A2-R-6020T(180),A2-HG- 6020T(180),A2-A5-6020T(180),A2-CO- 6020T(180),A2-A5-6020T(180),A2-HGPREP- 6020T(180),A2-CD-6020T(180),A2-HGPREP- 6020T(180),A2-SE-6020T(180),A2-HGPREP- 3050:2T(180),A2-SE-6020T(180),A2-HGPREP- 6020T(180),A2-A1-6020T(180),A2-HG- 6020T(180),A2-A1-6020T(180),A2-NA- 6020T(180),A2-A1-6020T(180),A2-CU- 6020T(180),A2-A1-FCD- 6020T(180),A2-PAH/PCBCONG(14)
	Frozen Date/Time									15-JUL-20 19:32			
	Seal	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Pres	≻	≻	≻	≻	≻	≻	z	≻	≻	≻	≻	>
	Temp deg C	4.8	4.8	4.8	4.8	8.	4.8	4.8	4.8	4.8	4.8	4.8	4.8
	Final pH												
	Initial pH	AN	NA	NA	NA	ΨZ Z	NA	NA	NA	NA	NA	NA	Υ Υ Υ
	Cooler	¢	A	A	A	ح	۲	A	A	A	A	A	٩
JF MORAN TERMINAL er: DA-JFM-200713	rmation Container Type	Plastic 8oz unpreserved for Grain Size	Glass 250ml/8oz unpreserved	Plastic 2oz unpreserved for TS	Glass 60mL/2oz unpreserved	Glass 120ml/4oz unpreserved	Plastic 8oz unpreserved for Grain Size	Vial MeOH preserved split	Vial Water preserved split	Vial Water preserved split	Plastic 2oz unpreserved for TS	Glass 60mL/2oz unpreserved	Glass 120ml/4oz unpreserved
Project Name: Project Number:	Container Information Container ID Contai	L2029589-03H	L2029589-03J	L2029589-04A	L2029589-04B	L2029589-04C	L2029589-04D	L2029589-04E	L2029589-04F	L2029589-04G	L2029589-05A	L2029589-05B	L2029589-05C

Lab Number: L2029589 Report Date: 08/13/20 Serial_No:08132016:52

*Values in parentheses indicate holding time in days

Page 60 of 116

Project Name: Project Number:	JF MORAN TERMINAL 91: DA-JFM-200713								Lab Number: L2029589 Report Date: 08/13/20
Container Information	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	Нd	Нd		Pres	Seal	Date/Time	Analysis(*)
L2029589-05D	Plastic 8oz unpreserved for Grain Size	۲	AN		4.8	~	Absent		A2-HYDRO-TFINE (),A2-HYDRO-FSAND (),A2- HYDRO-CGRAVEL (),A2-HYDRO- MSAND (),A2-HYDRO-TGRAVEL (),A2-HYDRO- CSAND (),A2-HYDRO-TSAND (),A2-HYDRO- COBBLES (),A2-HYDRO-FGRAVEL ()
L2029589-05E	Vial MeOH preserved split	A	NA		4.8	z	Absent		SUB-8260HLW(2)
L2029589-05F	Vial Water preserved split	A	NA		4.8	≻	Absent	15-JUL-20 19:32	SUB-8260HLW(2)
L2029589-05G	Vial Water preserved split	A	NA		4.8	≻	Absent	15-JUL-20 19:32	SUB-8260HLW(2)
L2029589-06A	Plastic 2oz unpreserved for TS	A	NA		4.8	≻	Absent		A2-TS(7)
L2029589-06B	Glass 60mL/2oz unpreserved	A	NA		4.8	≻	Absent		EPH-20(14)
L2029589-06C	Glass 120ml/4oz unpreserved	ح	Υ Υ		8.	>	Absent		A2-PB-6020T(180),A2-FE-6020T(180),A2-BA- 6020T(180),A2-SB-6020T(180),A2-ZN- 6020T(180),A2-NI-6020T(180),A2-CR- 6020T(180),A2-TL-6020T(180),A2-CC- 6020T(180),A2-TL-6020T(180),A2-CC- 6020T(180),A2-TL-6020T(180),A2-AS- 6020T(180),A2-TL-6020T(180),A2-AS- 6020T(180),A2-TL-6020T(180),A2-NG- 6020T(180),A2-PREP-3050:2T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-PREP-3050:2T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-NG- 6020T(180),A2-NG-
L2029589-06D	Plastic 8oz unpreserved for Grain Size	A	AN		4.8	≻	Absent		A2-HYDRO-TFINE(),A2-HYDRO-FSAND(),A2- HYDRO-CGRAVEL(),A2-HYDRO- MSAND(),A2-HYDRO-TGRAVEL(),A2-HYDRO- CSAND(),A2-HYDRO-TSAND(),A2-HYDRO- COBBLES(),A2-HYDRO-FGRAVEL()
L2029589-06E	Vial MeOH preserved split	A	NA		4.8	z	Absent		SUB-8260HLW(2)
L2029589-06F	Vial Water preserved split	A	NA		4.8	≻	Absent	15-JUL-20 19:32	SUB-8260HLW(2)
L2029589-06G	Vial Water preserved split	A	AN		4.8	≻	Absent	15-JUL-20 19:32	SUB-8260HLW(2)
Container Comments	nments								
L2029589-04F	WM: broken upon receipt in Westborough login 7/15/20 19:30	7/15/20 19:30							

Page 61 of 116

*Values in parentheses indicate holding time in days

ALPHA

Lab Number: L2029589 Serial_No:08132016:52

Project Name: JF MORAN TERMINAL

Project Number: DA-JFM-200713

Lab Number: L2029589

Report Date: 08/13/20

GLOSSARY

Acronyms

Acronyins	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotos	

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: JF MORAN TERMINAL

Project Number: DA-JFM-200713

Lab Number: L2029589 Report Date: 08/13/20

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration. (DoD and NYSDEC Part 375 PFAS only.)
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: DU Report with 'J' Qualifiers

Project Name: JF MORAN TERMINAL

Project Number: DA-JFM-200713

Lab Number: L2029589 Report Date: 08/13/20

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

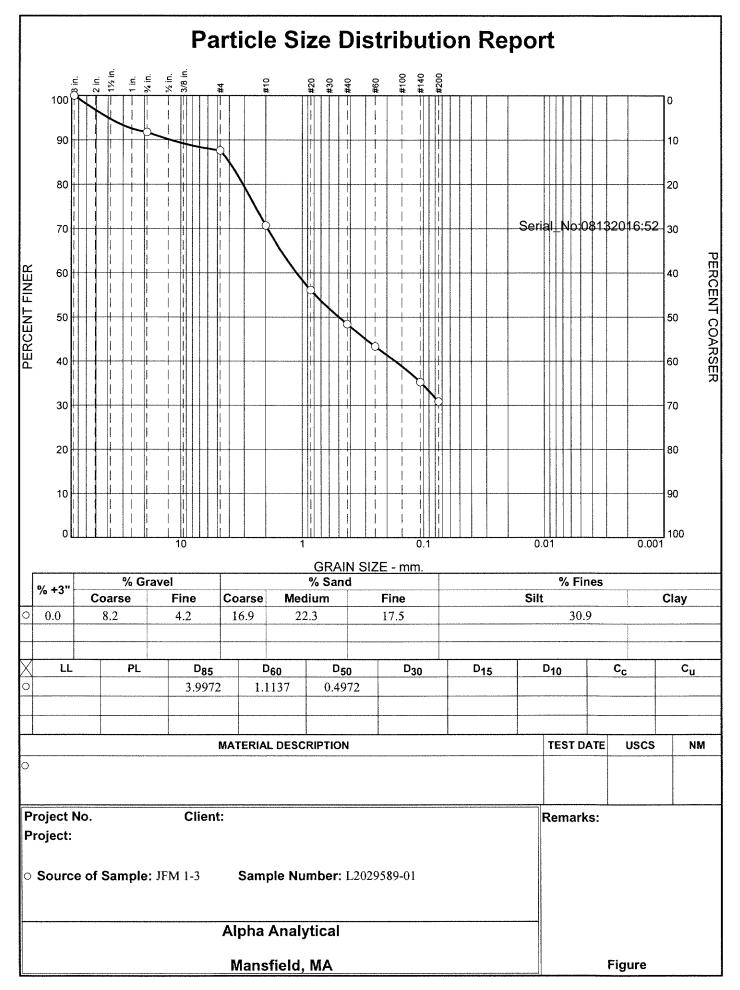
Report Format: DU Report with 'J' Qualifiers

 Lab Number:
 L2029589

 Report Date:
 08/13/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 12 Annual Book of ASTM Standards. (American Society for Testing and Materials) ASTM International.
- 105 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997 in conjunction with NOAA Technical Memorandum NMFS-NWFSC-59: Extraction, Cleanup and GC/MS Analysis of Sediments and Tissues for Organic Contaminants, March 2004 and the Determination of Pesticides and PCBs in Water and Oil/Sediment by GC/MS: Method 680, EPA 01A0005295, November 1985.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 135 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.

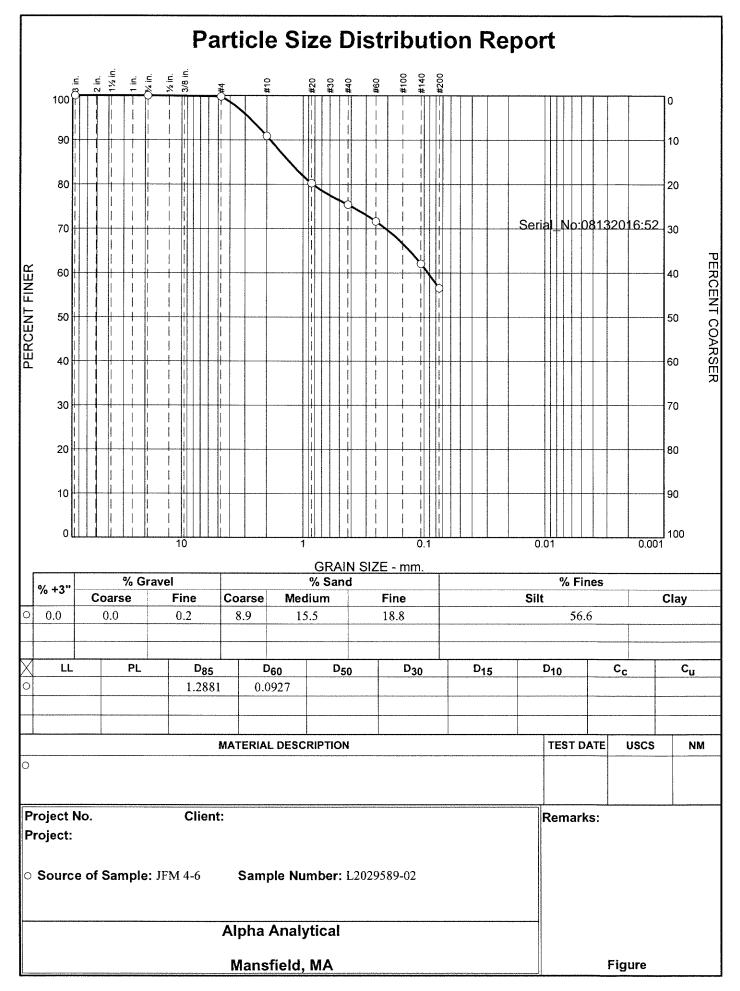

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ASTM D6913/D7928 GRAIN SIZE ANALYSIS

8/13/2020


Location: JFM 1-3

Sample Number: L2029589-01

				Sieve Tes	t Data		
Post #200 Wa	sh Test Weight		Sample and T Wt. = 0.00 Is #200 from v				ni ya si njegovno napima na
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	Serial_No:08132016:52
99.82	0.00	3	0.00	0.00	100.0	0.0	
		0.75	8.20	0.00	91.8	8.2	
		#4	4.15	0.00	87.6	12.4	
		#10	16.90	0.00	70.7	29.3	
		#20	14.57	0.00	56.1	43.9	
		#40	7.66	0.00	48.4	51.6	
		#60	5.08	0.00	43.3	56.7	
		#140	8.04	0.00	35.3	64.7	
		#200	4.40	0.00	30.9	69.1	
			- Fr	actional Co	mperiones		

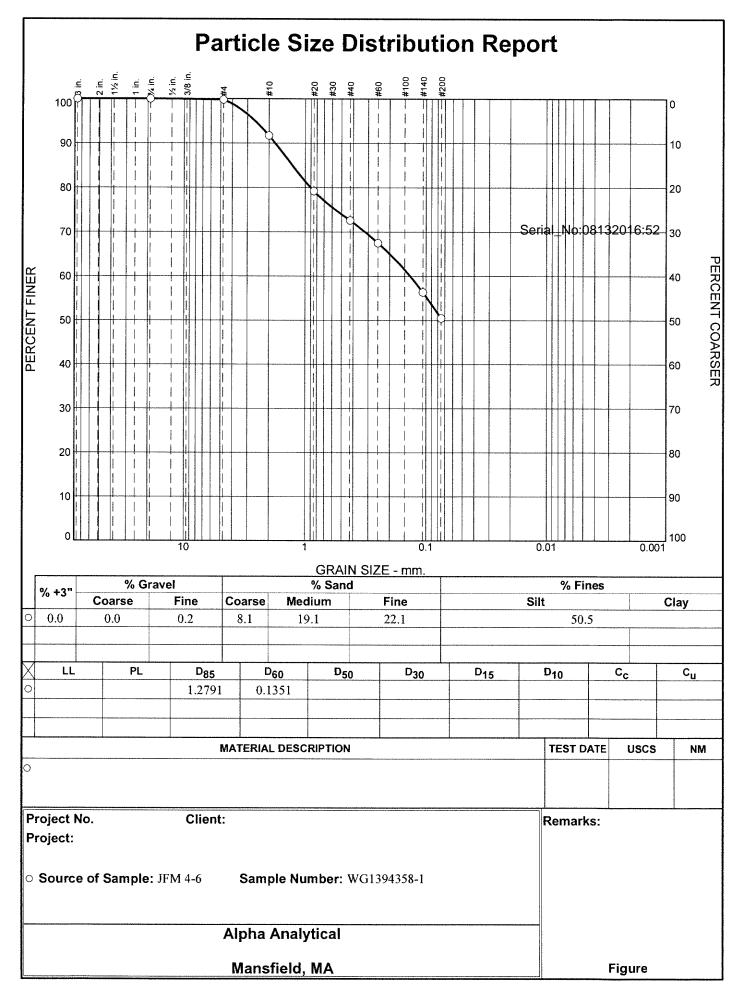
Cobbles		Gravel			Sa	nd			Fines	
Connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	8.2	4.2	12.4	16.9	22.3	17.5	56.7			30.9

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.1704	0.4972	1.1137	3.0820	3.9972	12.1753	39.8348

8/13/2020

Location: JFM 4-6

Sample Number: L2029589-02


	•			Sieve Tes	Data		
Post #200 Wa	sh Test Weight		Sample and T Wt. = 0.00 Is #200 from v				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	Serial_No:08132016:52
47.09	0.00	3	0.00	0.00	100.0	0.0	
		0.75	0.00	0.00	100.0	0.0	
		#4	0.11	0.00	99.8	0.2	
		#10	4.18	0.00	90.9	9.1	
		#20	5.02	0.00	80.2	19.8	
		#40	2.27	0.00	75.4	24.6	
		#60	1.77	0.00	71.7	28.3	
		#140	4.52	0.00	62.1	37.9	
		#200	2.59	0.00	56.6	43.4	
		12	Fr	actional Co	mpomente	-	

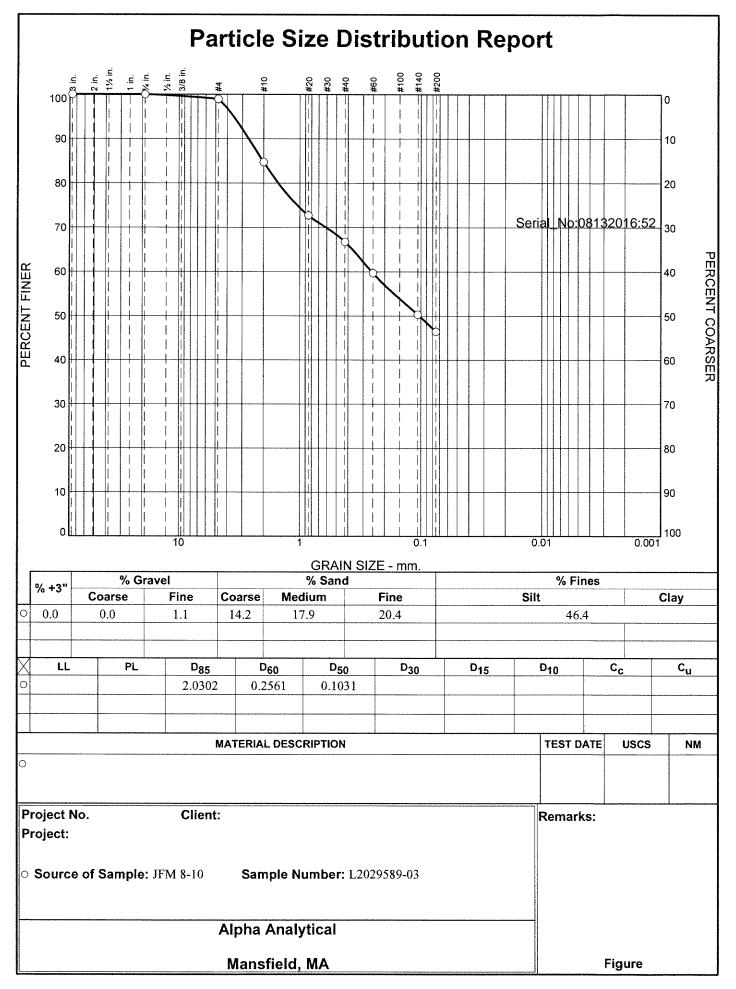
Cobbles		Gravel			Sa	nd			Fines	
CODDies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.2	0.2	8.9	15.5	18.8	43.2			56.6

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
							0.0927	0.8293	1.2881	1.8708	2.7823

Fineness Modulus 1.06

_____ Alpha Analytical _____

8/13/2020


Location: JFM 4-6

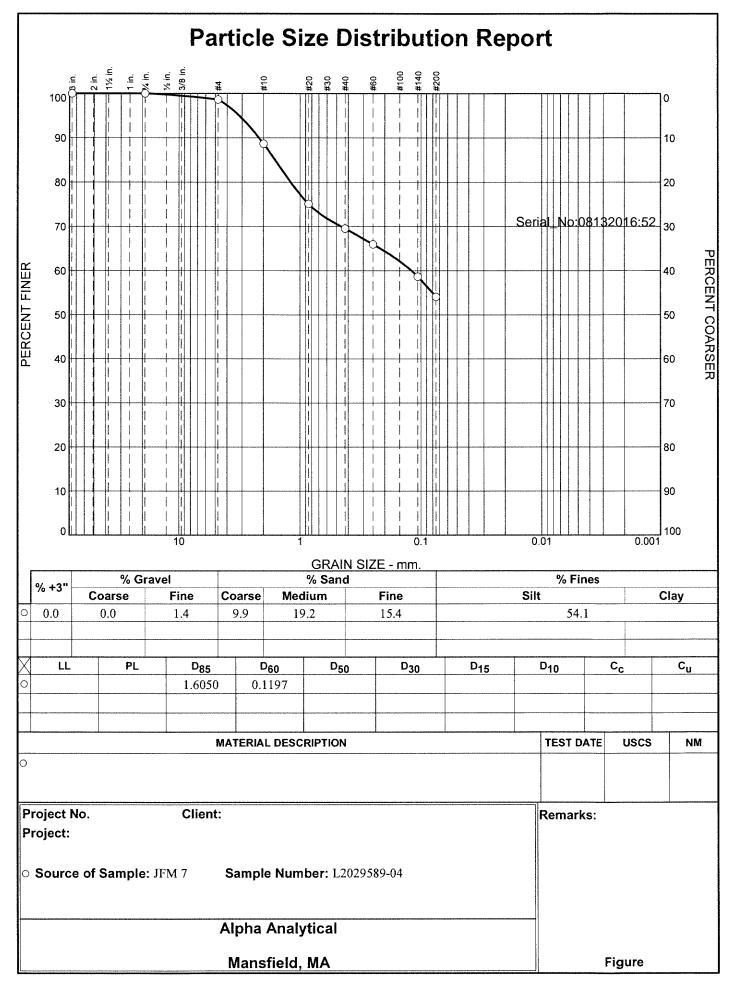
Sample Number: WG1394358-1

				Sieve Tes	Data		
Post #200 Wa	sh Test Weight		Sample and T Wt. = 0.00 Is #200 from v				anna an an an an an ann an an an an ann an a
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	Serial_No:08132016:52
56.55	0.00	3	0.00	0.00	100.0	0.0	
		0.75	0.00	0.00	100.0	0.0	
		#4	0.12	0.00	99.8	0.2	
		#10	4.57	0.00	91.7	8.3	
		#20	7.07	0.00	79.2	20.8	
		#40	3.74	0.00	72.6	27.4	
		#60	2.88	0.00	67.5	32.5	
		#140	6.30	0.00	56.4	43.6	
		#200	3.32	0.00	50.5	49.5	
			Fr	actional Co	mpomente		

Cobbles		Gravel			Sa	nd			Fines	
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.2	0.2	8.1	19.1	22.1	49.3			50.5

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
							0.1351	0.9053	1.2791	1.7743	2.6063

Location: JFM 8-10


Sample Number: L2029589-03

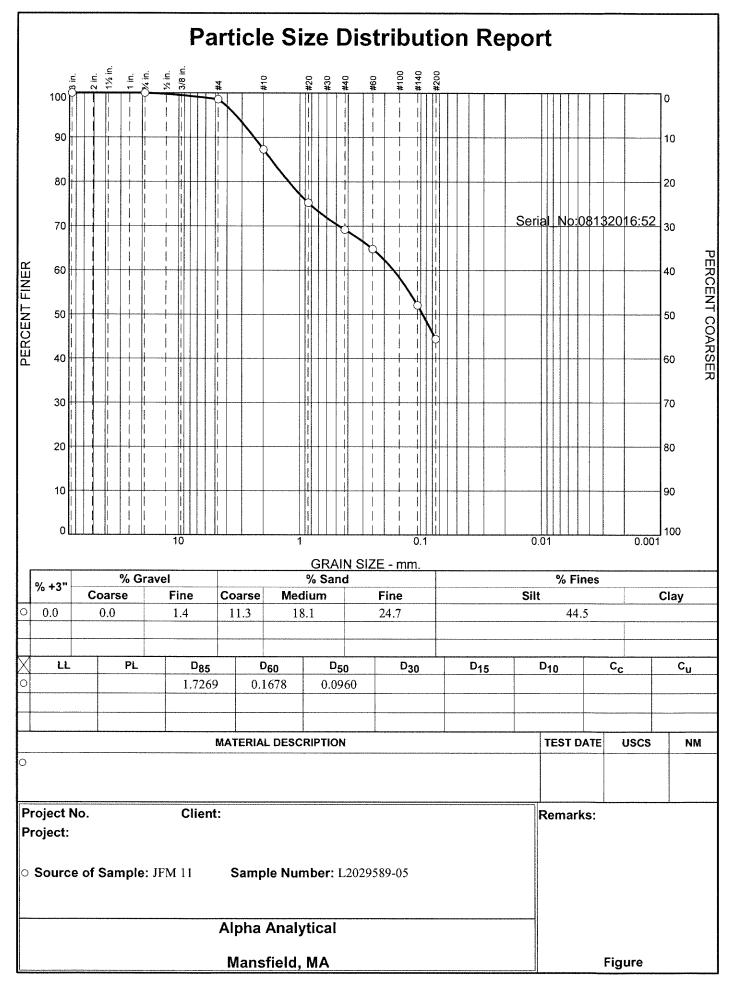
				Sieve Tes	t Data		
Post #200 Wa	sh Test Weight		Sample and T Wt. = 0.00 Is #200 from v				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	Serial_No:08132016:52
92.68	0.00	3	0.00	0.00	100.0	0.0	
		0.75	0.00	0.00	100.0	0.0	
		#4	0.98	0.00	98.9	1.1	
		#10	13.17	0.00	84.7	15.3	
		#20	11.12	0.00	72.7	27.3	
		#40	5.53	0.00	66.8	33.2	
		#60	6.57	0.00	59.7	40.3	
		#140	8.69	0.00	50.3	49.7	
		#200	3.58	0.00	46.4	53.6	
				actional Co	nisenemis.		

Cobbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.1	1.1	14.2	17.9	20.4	52.5			46.4

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.1031	0.2561	1.5072	2.0302	2.6654	3.5507

Fineness Modulus 1.51 8/13/2020

8/13/2020


Location: JFM 7

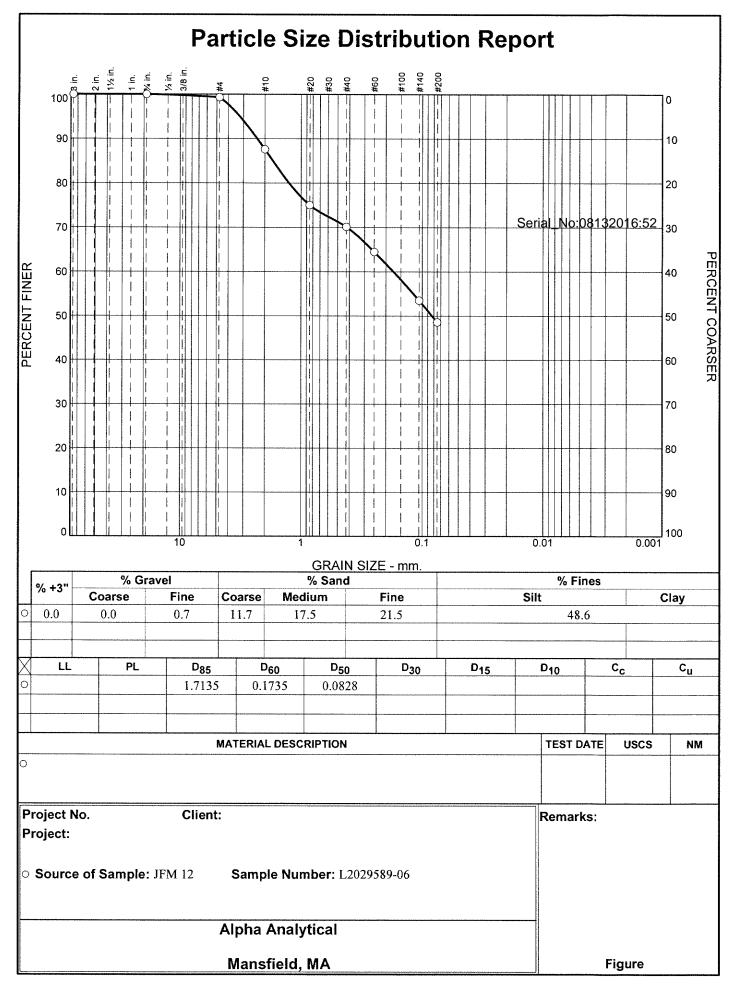
Sample Number: L2029589-04

				Sleve Tes	Data		
Post #200 Wa	sh Test Weight	Tare	Sample and T Wt. = 0.00 is #200 from v				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	Serial_No:08132016:52
98.98	0.00	3	0.00	0.00	100.0	0.0	
		0.75	0.00	0.00	100.0	0.0	
		#4	1.37	0.00	98.6	1.4	
		#10	9.86	0.00	88.7	11.3	
		#20	13.41	0.00	75.1	24.9	
		#40	5.52	0.00	69.5	30.5	
		#60	3.54	0.00	66.0	34.0	
		#140	7.24	0.00	58.6	41.4	
		#200	4.52	0.00	54.1	45.9	
			- Pr	actional Co	mponents		$\Phi_{i} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^$

Cobbles		Gravel	·····		Sa	nd	Fines			
Connes	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.4	1.4	9.9	19.2	15.4	44.5			54.1

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
							0.1197	1.1937	1.6050	2.1812	3.1773

8/13/2020


Location: JFM 11

Sample Number: L2029589-05

				Sieve Tes	t Data		
Post #200 Wa	sh Test Weight		Sample and T Wt. = 0.00 Is #200 from v				antonon manana en asone suo esta tota controla tota con mana de caso casta da sua da da sua da da sua da da su
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	Serial_No:08132016:52
93.02	0.00	3	0.00	0.00	100.0	0.0	
		0.75	0.00	0.00	100.0	0.0	
		#4	1.33	0.00	98.6	1.4	
		#10	10.51	0.00	87.3	12.7	
		#20	11.19	0.00	75.2	24.8	
		#40	5.63	0.00	69.2	30.8	
		#60	4.07	0.00	64.8	35.2	
		#140	11.85	0.00	52.1	47.9	
		#200	7.09	0.00	44.5	55.5	
			Fr	actional Co	mponemis.		

Cobbles		Gravel			Sa	nd	Fines			
CODDIes	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.4	1.4	11.3	18.1	24.7	54.1			44.5

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.0960	0.1678	1.2337	1.7269	2.3874	3.3965

8/13/2020

Location: JFM 12

Sample Number: L2029589-06

				Sieve Tes	t Data		
Post #200 Wa	sh Test Weight		Sample and T Wt. = 0.00 Js #200 from v				nan manan manan manan kara a mang manan di karang manan di karang manan karang karang karang karang karang kara Inan manan manan manan karang karan
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	Serial_No:08132016:52
89.02	0.00	3	0.00	0.00	100.0	0.0	
		0.75	0.00	0.00	100.0	0.0	
		#4	0.61	0.00	99.3	0.7	
		#10	10.43	0.00	87.6	12.4	
		#20	11.19	0.00	75.0	25.0	
		#40	4.36	0.00	70.1	29.9	
		#60	5.03	0.00	64.5	35.5	
		#140	9.76	0.00	53.5	46.5	
		#200	4.40	0.00	48.6	51.4	
			Pr	actional Co	mpomente		

Cobbles		Gravel			Sa	nd	Fines			
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.7	0.7	11.7	17.5	21.5	50.7			48.6

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.0828	0.1735	1.2567	1.7135	2.3126	3.2176

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.
EPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Анчы	CHAIN OF CUSTODY	CUSTO	DVA YO	-	01-1	Date Rec'd in Lab: -7	14/20	ALPHA Job #: \	13562027:
8 Walkup Drive		Project Information	uo			Report Information - Data Deliverables	ta Deliverables	Billing Information	tion
Westboro, MA, 01581 Tel: 508-898-9220	220 Mansfield, MA 02048 220 Tel: 508-822-9300	Project Name: JF 1110 KAN	NAJOLU	TEQNINGL	JAN	D ADEx D EMAIL		D Same as Client info	info PO#:
Client Information	uc	Project Location: CHARLESTOWN, MA	HARLE	STOWN	Am	Regulatory Requirements	its & Project I	Project Information Requirements	irements
Client STEEL	Client STEELE ASSOCIATES	Project #: D4- 5 FM - 2	- MH	200713	~	D Yes D No MA MCP Analytical Methods D Yes D No CT RCP Ant D Yes D No Matrix Spike Required on this SDG7 (Required for MCP Inorganics)	tical Methods equired on this SDG?	7 (Required for MCP	D Yes D No CT RCP Analytical Methods quired for MCP Inorganics)
Address: of up	Address: 94 61 FFARD ST.	Project Manager: ERIC	RICS	STERUE	11.	D Yes D No GW1 Standards (Info Required for Metals & EPH with Targets) D Yes D No. NDDES RCD.	s (Info Required for I	Metals & EPH with Ta	argets)
FALMOUTH	1 MA 02540	ALPHA Quote #:	11614	T		D Other State /Fed Program		Criteria	
Thone: 508 5	Phone: 508 540 - 600 1	Turn-Around Time	16			\$1.0	2 22 / 2/ /	1111	111
anait: ورزدی Additional P	Email: erice steele associates	Date Due:	D RUSH any car	interact is principle	lipano	ACRASS	NO soquer O		
						Les DACRAS D	Ann Singer & Seguer	52 45-	Fittration D Field D Lab to do Preservation D Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date 1 T	time	Sample Matrix	Sampler	METAL REPH: L	TPH: D	4.	San
29589-01	3FM 1-3	7/13/20	0		SWA				
20	5FM 4-6		1112		EMS				
S	JFM 8-10		1245		Ems				
to	JFM 7		1332		EMS				
d.	JFM II		52h1		EMS				
G	JFM 12	>	1350		SMB	* 1			
Container Type P= Plastic A= Ambar glass	Preservative A= None B= MCI			Contair	Container Type				
/= Vist 3= Glass 1= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		and a	BANBAIBASAIA				
C= Cube O= Other E= Encore D= BOD Batlle	F= MeOH G= NaHSOA H = Na ₁ S ₁ O3 I = Anscoble Acid	M A B	F	HIH 20	100 10	April Rederived By	And Zult	Date/Time All samples subm Alpha's Terms an	All samples submitted are subject to Alpha's Terms and Conditions.

PHA Job #: L26295% Iling Information same as Client info PO #: Inition Requirements			CLI KCP Analysical wathous	argets)		111		Filtration D Field D Lab to do Preservation D Lab to do	Sample Comments									All samples submitted are subject to Alpha's Terms and Conditions.		
	ALPHA Job #: L		O Same as Client info	Project Information Requirements	G? (Required for MCF	r Metals & EPH with T	Criteria	1111	Phy	2 WS	15/2/2/ /							-		Date/Time All sa
	Date Rec'd in Lab: 7 14/20	Report Information - Data Deliverables		Regulatory Requirements & Project	Types C No MA MCP Analytical Methods Yes C No Matrix Spike Required on this SDG? (Required for MCP Inorganics)	Yes C No GW1 Standards (Info Required for Metals & EPH with Targets) Yes C No NPDES RGP	Other State /Fed Program	BCP 15	IN CONSTRUCTION	Consult only Consult of the consult	NE EF SPE OF OF OF OF						× >			Alle Cont HAR THE
	L or L D		EQMINAL						(passively not g paul	131/20 1350	Sample Sampler Matrix Initials	SWIZ	EMS	SWE	EMS	ENS	SWA	Container Type	Preservative	Alt 20
011000	CHAIN OF CUSTODY	Project Information	Project Name: JF MORAN TE GMINAL	Project Location: CHARLESTAWN, MA	Project #: D4- 5 FM - 20	Project Manager: ERIC ST	ALPHA Quote #: 11614	Turn-Around Time	Date Due:	ck centers to re	Collection S Date Time	7/13/20 0935	1 1112	SH2I	1332	1425	1350			Relinquished By:
	CHAIN OF		320 Forbes Blod Mantifield, MA 02048 Tel: K04.879.4300		ASSOCIATES		, MA 02540	10-600 l	Email: erice Steeleossocietes	Rec?	Sample ID	3FM 1-3	5FM 4-6	JFM 8-10	JFM 7	SFM II	JFM 12	Preservative A= None	C= HNO, C= HNO,	E= NaOH F= MeOH G= NaHSOI H= NaSiSOI H= Nacobs Acid
	Ацена	A STATE AND	B Walkup Deve Westbore, MA, 01581 Twi- Fore real 0220	Client Information	Client: STEELE	Address of t 6-1	FALMOUTH	Phone: 508 540 - 600 1	Email Crices	the Alphe med o copy to records	ALPHA Lab ID (Lab Use Only)	29.59-51-61	20	S	po	A.	g	Container Type	A= Amber glass V= Vial Ge Glass	B= Bacter a cup C= Cuber C= Cuber E= Encore E= Encore Dana 02 of 11C

August 7, 2020

Mary Davis Alpha Analytical Laboratory 8 Walkup Drive Westborough, MA 01581

Project Location: Charlestown, MA Client Job Number: Project Number: L2029589 Laboratory Work Order Number: 20G1178

Enclosed are results of analyses for samples received by the laboratory on July 24, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

the Mcarthy

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
20G1178-01	5
20G1178-02	8
20G1178-03	11
20G1178-04	14
20G1178-05	17
20G1178-06	20
Sample Preparation Information	23
QC Data	24
Volatile Organic Compounds by GC/MS	24
B262682	24
Flag/Qualifier Summary	29
Certifications	30
Chain of Custody/Sample Receipt	32

Alpha Analytical Laboratory 8 Walkup Drive Westborough, MA 01581 ATTN: Mary Davis

PURCHASE ORDER NUMBER:

REPORT DATE: 8/7/2020

CREILIGE ORDER WOMBER.

PROJECT NUMBER: L2029589

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20G1178

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Charlestown, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
JFM 1-3	20G1178-01	Soil		SM 2540G	
				SW-846 8260C-D	
JFM 4-6	20G1178-02	Soil		SM 2540G	
				SW-846 8260C-D	
JFM 8-10	20G1178-03	Soil		SM 2540G	
				SW-846 8260C-D	
JFM 7	20G1178-04	Soil		SM 2540G	
				SW-846 8260C-D	
JFM 11	20G1178-05	Soil		SM 2540G	
				SW-846 8260C-D	
JFM 12	20G1178-06	Soil		SM 2540G	
				SW-846 8260C-D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C-D

Qualifications:

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

1,2-Dibromo-3-chloropropane (DB

20G1178-01[JFM 1-3], 20G1178-02[JFM 4-6], 20G1178-03[JFM 8-10], 20G1178-04[JFM 7], 20G1178-05[JFM 11], 20G1178-06[JFM 12], B262682-BLK1, B262682-BS1, B262682-BSD1

Carbon Tetrachloride

20G1178-01[JFM 1-3], 20G1178-02[JFM 4-6], 20G1178-03[JFM 8-10], 20G1178-04[JFM 7], 20G1178-05[JFM 11], 20G1178-06[JFM 12], B262682-BLK1, B262682-BS1, B262682-BSD1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result. Analyte & Samples(s) Qualified:

1,4-Dioxane

20G1178-01[JFM 1-3], 20G1178-02[JFM 4-6], 20G1178-03[JFM 8-10], 20G1178-04[JFM 7], 20G1178-05[JFM 11], 20G1178-06[JFM 12], B262682-BLK1, B262682-BS1, B262682-BSD1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

estimated. Analyte & Samples(s) Qualified:

Bromomethane

20G1178-01[JFM 1-3], 20G1178-02[JFM 4-6], 20G1178-03[JFM 8-10], 20G1178-04[JFM 7], 20G1178-05[JFM 11], 20G1178-06[JFM 12], B262682-BLK1, B262682-BS1, B262682-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

na Watthington

Lisa A. Worthington Technical Representative

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 1-3

Project Location: Charlestown, MA

Sample ID: 20G1178-01

Sample Matrix: Soil

Sampled: 7/13/2020 09:35

			Volatile Organic Con	npounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	0.39	0.12	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Benzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Bromobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Bromochloromethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Bromodichloromethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Bromoform	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Bromomethane	ND	0.012	mg/Kg dry	1	V-34	SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
2-Butanone (MEK)	0.096	0.046	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
n-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
sec-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
tert-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Carbon Disulfide	0.030	0.0070	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Carbon Tetrachloride	ND	0.0023	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Chlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Chlorodibromomethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Chloroethane	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Chloroform	ND	0.0046	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Chloromethane	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
2-Chlorotoluene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
4-Chlorotoluene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0023	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,2-Dibromoethane (EDB)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Dibromomethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,2-Dichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,3-Dichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,4-Dichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,1-Dichloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,2-Dichloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,1-Dichloroethylene	ND	0.0046	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
cis-1,2-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
trans-1,2-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,2-Dichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,3-Dichloropropane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
2,2-Dichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,1-Dichloropropene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
cis-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
trans-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Diethyl Ether	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Diisopropyl Ether (DIPE)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
1,4-Dioxane	ND	0.12	mg/Kg dry	1	V-16	SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Ethylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
Page 88 of 116]	Page 5	of 33

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 1-3

Project Location: Charlestown, MA

Sample ID: 20G1178-01

Sample Matrix: Soil

Sampled: 7/13/2020 09:35

Units						
	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 15:42	MFF
very Recovery Limi	ts	Flag/Qual				
70-130					7/26/20 15:42	
70-130					7/26/20 15:42	
	mg/Kg dry mg/Kg dry	mg/Kg dry 1 mg/Kg dr	mg/Kg dry 1 mg/Kg	mg/Kg dry 1 SW-846 8260C-D 70-130 70-130 70-130	mg/Kg dry 1 SW-846 8260C-D 7/26/20 mg/Kg dry 1 SW-846 8260C-D 7/26/	mg/Kg dry 1 SW-846 8260C-D 7/26/20 7/26/20 15:42 mg/Kg dry 1 SW-846 8260C-D 7/26/20 15:42 mg/Kg dry 1 SW-846 8260

% Solids	47.6		% Wt	1		SM 2540G	8/7/20	8/7/20 13:26	FWD
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
	Conv	entional Ch	emistry Parameters by	EPA/APHA/	SW-846 Methods (Fotal)			
Sample Matrix: Soil									
Sample ID: 20G1178-01									
Field Sample #: JFM 1-3	Sa	mpled: 7/13	3/2020 09:35						
Date Received: 7/24/2020									
Project Location: Charlestown, MA	Sa	mple Descrip	ption:				Work Orde	er: 20G1178	
	39 Spruce S	treet * East	Longmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 4-6

Project Location: Charlestown, MA

Sample ID: 20G1178-02

Sample Matrix: Soil

Sampled: 7/13/2020 11:12

			Volatile Organic Con	Pounds by G	C/110			D (77)	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	0.22	0.12	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Benzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Bromobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Bromochloromethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Bromodichloromethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Bromoform	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Bromomethane	ND	0.012	mg/Kg dry	1	V-34	SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
2-Butanone (MEK)	0.053	0.049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
n-Butylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
sec-Butylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
tert-Butylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Carbon Disulfide	0.019	0.0073	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Carbon Tetrachloride	ND	0.0024	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Chlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Chlorodibromomethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Chloroethane	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Chloroform	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Chloromethane	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
2-Chlorotoluene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
4-Chlorotoluene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0024	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,2-Dibromoethane (EDB)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Dibromomethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,2-Dichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,3-Dichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,4-Dichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,1-Dichloroethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,2-Dichloroethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,1-Dichloroethylene	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
cis-1,2-Dichloroethylene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
trans-1,2-Dichloroethylene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,2-Dichloropropane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,3-Dichloropropane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
2,2-Dichloropropane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,1-Dichloropropene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
cis-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
trans-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Diethyl Ether	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Diisopropyl Ether (DIPE)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
1,4-Dioxane	ND	0.12	mg/Kg dry	1	V-16	SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
Ethylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF
age 91 of 116								Page 8 d	of 33

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 4-6

Project Location: Charlestown, MA

Sample ID: 20G1178-02

Sample Matrix: Soil

Sampled: 7/13/2020 11:12

Volatile Organic Compounds by GC/MS													
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst				
Hexachlorobutadiene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
2-Hexanone (MBK)	ND	0.024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Isopropylbenzene (Cumene)	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
p-Isopropyltoluene (p-Cymene)	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Methyl tert-Butyl Ether (MTBE)	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Methylene Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
4-Methyl-2-pentanone (MIBK)	ND	0.024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Naphthalene	0.0054	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
n-Propylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Styrene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,1,1,2-Tetrachloroethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,1,2,2-Tetrachloroethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Tetrachloroethylene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Tetrahydrofuran	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Toluene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,2,3-Trichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,2,4-Trichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,1,1-Trichloroethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,1,2-Trichloroethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Trichloroethylene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Trichlorofluoromethane (Freon 11)	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,2,3-Trichloropropane	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,2,4-Trimethylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
1,3,5-Trimethylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Vinyl Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
m+p Xylene	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
o-Xylene	ND	0.0024	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:07	MFF				
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual								
1,2-Dichloroethane-d4		89.7	70-130					7/26/20 16:07					
Toluene-d8		91.7	70-130					7/26/20 16:07					
4-Bromofluorobenzene		93.5	70-130					7/26/20 16:07					

% Solids	49.8		% Wt	1		SM 2540G	8/7/20	8/7/20 13:26	FWD
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
							Date	Date/Time	
	Conv	entional Ch	nemistry Parameters by	y EPA/APHA/	SW-846 Methods (Total)			
Sample Matrix: Soil									
Sample ID: 20G1178-02									
Field Sample #: JFM 4-6	Sa	mpled: 7/13	3/2020 11:12						
Date Received: 7/24/2020									
Project Location: Charlestown, MA	Sa	mple Descri	ption:				Work Orde	er: 20G1178	
	39 Spruce S	treet * Eas	t Longmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 8-10

Project Location: Charlestown, MA

Sample ID: 20G1178-03

Sample Matrix: Soil

Sampled: 7/13/2020 12:45

		١	Volatile Organic Con	ipounds by G	C/MS		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	0.21	0.12	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF
Benzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF
Bromobenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Bromochloromethane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Bromodichloromethane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Bromoform	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Bromomethane	ND	0.012	mg/Kg dry	1	V-34	SW-846 8260C-D	7/26/20	7/26/20 16:32	
2-Butanone (MEK)	ND	0.049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
n-Butylbenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
sec-Butylbenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
tert-Butylbenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
tert-Butyl Ethyl Ether (TBEE)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Carbon Disulfide	0.013	0.0074	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Carbon Tetrachloride	ND	0.0025	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 16:32	
Chlorobenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Chlorodibromomethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Chloroethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Chloroform	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Chloromethane	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
2-Chlorotoluene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
4-Chlorotoluene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0025	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,2-Dibromoethane (EDB)	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Dibromomethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,2-Dichlorobenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,3-Dichlorobenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,4-Dichlorobenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
Dichlorodifluoromethane (Freon 12)	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,1-Dichloroethane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,2-Dichloroethane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,1-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
cis-1,2-Dichloroethylene	ND	0.0049	mg/Kg dry mg/Kg dry	1		SW-846 8260C-D SW-846 8260C-D	7/26/20	7/26/20 16:32	
trans-1,2-Dichloroethylene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,2-Dichloropropane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,3-Dichloropropane	ND	0.0025	mg/Kg dry mg/Kg dry	1		SW-846 8260C-D SW-846 8260C-D	7/26/20	7/26/20 16:32	
2,2-Dichloropropane	ND ND	0.0012	mg/Kg dry mg/Kg dry	1		SW-846 8260C-D SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,1-Dichloropropene	ND ND	0.0025		1		SW-846 8260C-D SW-846 8260C-D		7/26/20 16:32	
cis-1,3-Dichloropropene	ND ND		mg/Kg dry			SW-846 8260C-D SW-846 8260C-D	7/26/20		
trans-1,3-Dichloropropene		0.0012	mg/Kg dry	1			7/26/20	7/26/20 16:32	
Diethyl Ether	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D SW-846 8260C-D	7/26/20	7/26/20 16:32	
Disopropyl Ether (DIPE)	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	
· ·	ND	0.0012	mg/Kg dry	1	37.1Z	SW-846 8260C-D	7/26/20	7/26/20 16:32	
1,4-Dioxane	ND	0.12	mg/Kg dry	1	V-16	SW-846 8260C-D	7/26/20	7/26/20 16:32	
Ethylbenzene Page 94 of 116	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32 Page 11	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 8-10

Sample ID: 20G1178-03 Sample Matrix: Soil

Project Location: Charlestown, MA

Sampled: 7/13/2020 12:45

Volatile Organic Compounds by GC/MS													
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst				
Hexachlorobutadiene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
2-Hexanone (MBK)	ND	0.025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Isopropylbenzene (Cumene)	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
p-Isopropyltoluene (p-Cymene)	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Methyl tert-Butyl Ether (MTBE)	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Methylene Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
4-Methyl-2-pentanone (MIBK)	ND	0.025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Naphthalene	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
n-Propylbenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Styrene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,1,1,2-Tetrachloroethane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,1,2,2-Tetrachloroethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Tetrachloroethylene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Tetrahydrofuran	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Toluene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,2,3-Trichlorobenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,2,4-Trichlorobenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,1,1-Trichloroethane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,1,2-Trichloroethane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Trichloroethylene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Trichlorofluoromethane (Freon 11)	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,2,3-Trichloropropane	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,2,4-Trimethylbenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
1,3,5-Trimethylbenzene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Vinyl Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
m+p Xylene	ND	0.0049	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
o-Xylene	ND	0.0025	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:32	MFF				
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual								
1,2-Dichloroethane-d4		90.9	70-130					7/26/20 16:32					
Toluene-d8		89.8	70-130					7/26/20 16:32					
4-Bromofluorobenzene		94.4	70-130					7/26/20 16:32					

	39 Spruce S	treet * East	Longmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Charlestown, MA	Sa	mple Descrip	otion:				Work Orde	er: 20G1178	
Date Received: 7/24/2020									
Field Sample #: JFM 8-10	Sa	mpled: 7/13	/2020 12:45						
Sample ID: 20G1178-03									
Sample Matrix: Soil									
	Conv	entional Ch	emistry Parameters by	/ EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	46.6		% Wt	1		SM 2540G	8/7/20	8/7/20 13:26	FWD

٦

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020

Project Location: Charlestown, MA

Field Sample #: JFM 7

Sample ID: 20G1178-04

Sample Matrix: Soil

Sampled: 7/13/2020 13:32

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Propared	Date/Time	Anab
Analyte	0.32	0.19	mg/Kg dry	1	riag/Quai	SW-846 8260C-D	Prepared 7/26/20	Analyzed 7/26/20 16:56	Analys MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Benzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Bromobenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Bromochloromethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Bromodichloromethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Bromoform	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Bromomethane	ND	0.019	mg/Kg dry	1	V-34	SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
2-Butanone (MEK)	ND	0.074	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
n-Butylbenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
sec-Butylbenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
tert-Butylbenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Carbon Disulfide	0.043	0.011	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Carbon Tetrachloride	ND	0.0037	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Chlorobenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Chlorodibromomethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Chloroethane	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Chloroform	ND	0.0074	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Chloromethane	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
2-Chlorotoluene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
4-Chlorotoluene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0037	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2-Dibromoethane (EDB)	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Dibromomethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2-Dichlorobenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,3-Dichlorobenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,4-Dichlorobenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,1-Dichloroethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2-Dichloroethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,1-Dichloroethylene	ND	0.0074	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
cis-1,2-Dichloroethylene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
trans-1,2-Dichloroethylene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2-Dichloropropane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,3-Dichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
2,2-Dichloropropane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,1-Dichloropropene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Diethyl Ether	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Diisopropyl Ether (DIPE)	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,4-Dioxane	ND	0.19	mg/Kg dry	1	V-16	SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Ethylbenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
age 97 of 116			6 6 7					Page 14	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 7

Sample ID: 20G1178-04

Project Location: Charlestown, MA

Sample Matrix: Soil

Sampled: 7/13/2020 13:32

		Vol	atile Organic Com	oounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
2-Hexanone (MBK)	ND	0.037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Isopropylbenzene (Cumene)	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0074	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Methylene Chloride	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Naphthalene	ND	0.0074	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
n-Propylbenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Styrene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,1,1,2-Tetrachloroethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,1,2,2-Tetrachloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Tetrachloroethylene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Tetrahydrofuran	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Toluene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2,3-Trichlorobenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2,4-Trichlorobenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,1,1-Trichloroethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,1,2-Trichloroethane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Trichloroethylene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Trichlorofluoromethane (Freon 11)	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2,3-Trichloropropane	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,2,4-Trimethylbenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
1,3,5-Trimethylbenzene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Vinyl Chloride	ND	0.019	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
m+p Xylene	ND	0.0074	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
o-Xylene	ND	0.0037	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 16:56	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		92.8	70-130					7/26/20 16:56	
Toluene-d8		94.0	70-130					7/26/20 16:56	
4-Bromofluorobenzene		97.2	70-130					7/26/20 16:56	

% Solids	46.5		% Wt	1		SM 2540G	8/7/20	8/7/20 13:26	FWD
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
	Conv	entional Cl	hemistry Parameters b	y EPA/APHA/	SW-846 Methods (*	Fotal)	Date	Date/Time	
Sample Matrix: Soil									
Sample ID: 20G1178-04									
Field Sample #: JFM 7	Sa	mpled: 7/1	3/2020 13:32						
Date Received: 7/24/2020									
Project Location: Charlestown, MA	Sa	mple Descr	iption:				Work Orde	r: 20G1178	
	39 Spruce S	treet * Eas	t Longmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			

٦

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 11

Project Location: Charlestown, MA

Sample ID: 20G1178-05

Sample Matrix: Soil

Sampled: 7/13/2020 14:25

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed 7/26/20 17:21	Analyst
tert-Amyl Methyl Ether (TAME)	0.31	0.21	mg/Kg dry	1		SW-846 8260C-D	7/26/20		MFF
Benzene	ND ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Bromobenzene	ND	0.0043 0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Bromochloromethane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF MFF
Bromodichloromethane	ND ND		mg/Kg dry			SW-846 8260C-D	7/26/20	7/26/20 17:21	
Bromoform		0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21 7/26/20 17:21	MFF
Bromomethane	ND ND	0.0043	mg/Kg dry		V-34	SW-846 8260C-D	7/26/20		MFF
2-Butanone (MEK)	ND	0.021	mg/Kg dry	1	v-34	SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF MFF
n-Butylbenzene		0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	
sec-Butylbenzene	ND ND	0.0043	mg/Kg dry	1		SW-846 8260C-D SW-846 8260C-D	7/26/20 7/26/20	7/26/20 17:21	MFF
tert-Butylbenzene	ND		mg/Kg dry	1				7/26/20 17:21	MFF MFF
tert-Butyl Ethyl Ether (TBEE)		0.0043	mg/Kg dry			SW-846 8260C-D	7/26/20	7/26/20 17:21	
Carbon Disulfide	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Carbon Tetrachloride	0.039	0.013	mg/Kg dry	1	14.05	SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
	ND	0.0043	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Chlorobenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Chlorodibromomethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Chloroform	ND	0.0086	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Chloromethane	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
2-Chlorotoluene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
4-Chlorotoluene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0043	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2-Dibromoethane (EDB)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Dibromomethane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2-Dichlorobenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,3-Dichlorobenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,4-Dichlorobenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,1-Dichloroethane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2-Dichloroethane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,1-Dichloroethylene	ND	0.0086	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
cis-1,2-Dichloroethylene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
trans-1,2-Dichloroethylene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2-Dichloropropane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,3-Dichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
2,2-Dichloropropane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,1-Dichloropropene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Diethyl Ether	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Diisopropyl Ether (DIPE)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,4-Dioxane	ND	0.21	mg/Kg dry	1	V-16	SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Ethylbenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
age 100 of 116								Page 17	of 33

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020
Field Sample #: JFM 11

Project Location: Charlestown, MA

Sample ID: 20G1178-05

Sample Matrix: Soil

Sampled: 7/13/2020 14:25

		Vo	atile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
2-Hexanone (MBK)	ND	0.043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Isopropylbenzene (Cumene)	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0086	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Methylene Chloride	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Naphthalene	ND	0.0086	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
n-Propylbenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Styrene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,1,1,2-Tetrachloroethane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,1,2,2-Tetrachloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Tetrachloroethylene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Tetrahydrofuran	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Toluene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2,3-Trichlorobenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2,4-Trichlorobenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,1,1-Trichloroethane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,1,2-Trichloroethane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Trichloroethylene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Trichlorofluoromethane (Freon 11)	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2,3-Trichloropropane	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,2,4-Trimethylbenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
1,3,5-Trimethylbenzene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Vinyl Chloride	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
m+p Xylene	ND	0.0086	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
o-Xylene	ND	0.0043	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:21	MFF
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
1,2-Dichloroethane-d4		88.3	70-130					7/26/20 17:21	
Toluene-d8		94.9	70-130					7/26/20 17:21	
4-Bromofluorobenzene		98.6	70-130					7/26/20 17:21	

	39 Spruce S	treet * East L	ongmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Charlestown, MA	Sa	mple Descript	ion:				Work Orde	er: 20G1178	
Date Received: 7/24/2020									
Field Sample #: JFM 11	Sa	mpled: 7/13/2	2020 14:25						
Sample ID: 20G1178-05									
Sample Matrix: Soil									
	Conv	entional Cher	mistry Parameters by	/ EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	43.8		% Wt	1		SM 2540G	8/7/20	8/7/20 13:26	FWD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 7/24/2020

Project Location: Charlestown, MA

Field Sample #: JFM 12

Sample ID: 20G1178-06 Sample Matrix: Soil Sampled: 7/13/2020 13:50

	n 1/	DI	¥T •-	D 2 - 4		1 a a b	Date	Date/Time	
Analyte	0.35	RL 0.22	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
			mg/Kg dry	-		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
ert-Amyl Methyl Ether (TAME) Benzene	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Bromobenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Bromochloromethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Bromodichloromethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Bromoform	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Bromomethane	ND	0.022	mg/Kg dry	1	V-34	SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
2-Butanone (MEK)	ND	0.088	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
n-Butylbenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
sec-Butylbenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
tert-Butylbenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Carbon Disulfide	0.056	0.013	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Carbon Tetrachloride	ND	0.0044	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Chlorobenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Chlorodibromomethane	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Chloroethane	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Chloroform	ND	0.0088	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Chloromethane	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
2-Chlorotoluene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
4-Chlorotoluene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0044	mg/Kg dry	1	V-05	SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2-Dibromoethane (EDB)	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Dibromomethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2-Dichlorobenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,3-Dichlorobenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,4-Dichlorobenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,1-Dichloroethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2-Dichloroethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,1-Dichloroethylene	ND	0.0088	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
cis-1,2-Dichloroethylene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
trans-1,2-Dichloroethylene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2-Dichloropropane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,3-Dichloropropane	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
2,2-Dichloropropane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,1-Dichloropropene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
cis-1,3-Dichloropropene	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
trans-1,3-Dichloropropene	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Diethyl Ether	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Diisopropyl Ether (DIPE)	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,4-Dioxane	ND	0.22	mg/Kg dry	1	V-16	SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Ethylbenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
age 103 of 116	-		<i>G G J</i>				ſ	Page 20	

Volatile Organic Compounds by GC/MS

Sample Description:

Date Received: 7/24/2020 Field Sample #: JFM 12

Project Location: Charlestown, MA

Sample ID: 20G1178-06

Sample Matrix: Soil

Sampled: 7/13/2020 13:50

- - - - -

Work Order: 20G1178

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
2-Hexanone (MBK)	ND	0.044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Isopropylbenzene (Cumene)	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0088	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Methylene Chloride	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Naphthalene	ND	0.0088	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
n-Propylbenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Styrene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,1,1,2-Tetrachloroethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,1,2,2-Tetrachloroethane	ND	0.0022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Tetrachloroethylene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Tetrahydrofuran	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Toluene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2,3-Trichlorobenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2,4-Trichlorobenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,1,1-Trichloroethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,1,2-Trichloroethane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Trichloroethylene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Trichlorofluoromethane (Freon 11)	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2,3-Trichloropropane	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,2,4-Trimethylbenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
1,3,5-Trimethylbenzene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Vinyl Chloride	ND	0.022	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
m+p Xylene	ND	0.0088	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
o-Xylene	ND	0.0044	mg/Kg dry	1		SW-846 8260C-D	7/26/20	7/26/20 17:46	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		85.5	70-130					7/26/20 17:46	
Toluene-d8		94.0	70-130					7/26/20 17:46	
4-Bromofluorobenzene		101	70-130					7/26/20 17:46	

	39 Spruce S	treet * East	Longmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Charlestown, MA	Sa	mple Descrip	otion:				Work Orde	er: 20G1178	
Date Received: 7/24/2020									
Field Sample #: JFM 12	Sa	mpled: 7/13	/2020 13:50						
Sample ID: 20G1178-06									
Sample Matrix: Soil									
	Conv	entional Ch	emistry Parameters by	EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	44.3		% Wt	1		SM 2540G	8/7/20	8/7/20 13:26	FWD

Sample Extraction Data

Prep Method: % Solids Analytical Method: SM 2540G

Lab Number [Field ID]	Batch	Date
20G1178-01 [JFM 1-3]	B263778	08/07/20
20G1178-02 [JFM 4-6]	B263778	08/07/20
20G1178-03 [JFM 8-10]	B263778	08/07/20
20G1178-04 [JFM 7]	B263778	08/07/20
20G1178-05 [JFM 11]	B263778	08/07/20
20G1178-06 [JFM 12]	B263778	08/07/20

Prep Method: SW-846 5035 Analytical Method: SW-846 8260C-D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
20G1178-01 [JFM 1-3]	B262682	9.04	10.0	07/26/20	
20G1178-02 [JFM 4-6]	B262682	8.21	10.0	07/26/20	
20G1178-03 [JFM 8-10]	B262682	8.71	10.0	07/26/20	
20G1178-04 [JFM 7]	B262682	5.81	10.0	07/26/20	
20G1178-05 [JFM 11]	B262682	5.32	10.0	07/26/20	
20G1178-06 [JFM 12]	B262682	5.14	10.0	07/26/20	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B262682 - SW-846 5035										
Blank (B262682-BLK1)			I	Prepared & A	Analyzed: 07/	/26/20				
Acetone	ND	0.10	mg/Kg wet							
tert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
Benzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
Bromochloromethane	ND	0.0020	mg/Kg wet							
Bromodichloromethane	ND	0.0020	mg/Kg wet							
Bromoform	ND	0.0020	mg/Kg wet							
Bromomethane	ND	0.010	mg/Kg wet							V-34
2-Butanone (MEK)	ND	0.040	mg/Kg wet							
n-Butylbenzene	ND	0.0020	mg/Kg wet							
sec-Butylbenzene	ND	0.0020	mg/Kg wet							
tert-Butylbenzene	ND	0.0020	mg/Kg wet							
tert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
Carbon Disulfide	ND	0.0060	mg/Kg wet							
Carbon Tetrachloride	ND	0.0020	mg/Kg wet							V-05
Chlorobenzene	ND	0.0020	mg/Kg wet							
Chlorodibromomethane	ND	0.0010	mg/Kg wet							
Chloroethane	ND	0.010	mg/Kg wet							
Chloroform	ND	0.0040	mg/Kg wet							
Chloromethane	ND	0.010	mg/Kg wet							
2-Chlorotoluene	ND	0.0020	mg/Kg wet							
I-Chlorotoluene	ND	0.0020	mg/Kg wet							
,2-Dibromo-3-chloropropane (DBCP)	ND	0.0020	mg/Kg wet							V-05
,,-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet							
Dibromomethane	ND	0.0020	mg/Kg wet							
,2-Dichlorobenzene	ND	0.0020	mg/Kg wet							
,3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
,4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
Dichlorodifluoromethane (Freon 12)	ND ND	0.010	mg/Kg wet							
1,1-Dichloroethane	ND ND	0.0020	mg/Kg wet							
1,2-Dichloroethane	ND ND	0.0020	mg/Kg wet							
I,1-Dichloroethylene	ND ND	0.0020	mg/Kg wet							
:is-1,2-Dichloroethylene	ND ND	0.0040	mg/Kg wet							
rans-1,2-Dichloroethylene	ND ND	0.0020	mg/Kg wet							
I,2-Dichloropropane		0.0020	mg/Kg wet mg/Kg wet							
I,2-Dichloropropane	ND ND	0.0020	mg/Kg wet mg/Kg wet							
2,2-Dichloropropane	ND ND	0.0010	mg/Kg wet mg/Kg wet							
,1-Dichloropropane		0.0020	mg/Kg wet mg/Kg wet							
:is-1,3-Dichloropropene	ND ND	0.0020	mg/Kg wet mg/Kg wet							
rans-1,3-Dichloropropene	ND ND	0.0010	mg/Kg wet mg/Kg wet							
rans-1,3-Dichloropropene Diethyl Ether	ND	0.0010	mg/Kg wet mg/Kg wet							
Diethyl Ether Diisopropyl Ether (DIPE)	ND	0.010 0.0010	mg/Kg wet mg/Kg wet							
Jusopropyl Ether (DIPE)	ND									1110
,4-Dioxane Ethylbenzene	ND	0.10 0.0020	mg/Kg wet							V-16
•	ND	0.0020	mg/Kg wet							
Hexachlorobutadiene	ND	0.0020	mg/Kg wet							
-Hexanone (MBK)	ND	0.020	mg/Kg wet							
sopropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
-Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
Aethyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
fethylene Chloride	ND	0.010	mg/Kg wet							
-Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
Japhthalene	ND	0.0040	mg/Kg wet							

Page 107 of 116

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B262682 - SW-846 5035											
Blank (B262682-BLK1)				Prepared & A	Analyzed: 07	/26/20					
n-Propylbenzene	ND	0.0020	mg/Kg wet								
Styrene	ND	0.0020	mg/Kg wet								
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet								
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet								
Tetrachloroethylene	ND	0.0020	mg/Kg wet								
Tetrahydrofuran	ND	0.010	mg/Kg wet								
Toluene	ND	0.0020	mg/Kg wet								
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet								
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet								
Trichloroethylene	ND	0.0020	mg/Kg wet								
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet								
1,2,3-Trichloropropane	ND	0.0020	mg/Kg wet								
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet								
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet								
Vinyl Chloride	ND	0.010	mg/Kg wet								
m+p Xylene	ND	0.0040	mg/Kg wet								
o-Xylene	ND	0.0020	mg/Kg wet								
Surrogate: 1,2-Dichloroethane-d4	0.0433		mg/Kg wet	0.0500		86.7	70-130				
Surrogate: Toluene-d8	0.0468		mg/Kg wet	0.0500		93.7	70-130				
Surrogate: 4-Bromofluorobenzene	0.0508		mg/Kg wet	0.0500		102	70-130				
LCS (B262682-BS1)]	Prepared & A	Analyzed: 07	/26/20					
Acetone	0.154	0.10	mg/Kg wet	0.200		76.9	40-160				
tert-Amyl Methyl Ether (TAME)	0.0168	0.0010	mg/Kg wet	0.0200		83.9	70-130				
Benzene	0.0175	0.0020	mg/Kg wet	0.0200		87.3	70-130				
Bromobenzene	0.0188	0.0020	mg/Kg wet	0.0200		93.9	70-130				
Bromochloromethane	0.0181	0.0020	mg/Kg wet	0.0200		90.7	70-130				
Bromodichloromethane	0.0157	0.0020	mg/Kg wet	0.0200		78.4	70-130				
Bromoform	0.0153	0.0020	mg/Kg wet	0.0200		76.7	70-130				
Bromomethane	0.0160	0.010	mg/Kg wet	0.0200		80.1	40-160			V-34	
2-Butanone (MEK)	0.177	0.040	mg/Kg wet	0.200		88.4	40-160				
n-Butylbenzene	0.0169	0.0020	mg/Kg wet	0.0200		84.4	70-130				
sec-Butylbenzene	0.0176	0.0020	mg/Kg wet	0.0200		88.2	70-130				
tert-Butylbenzene	0.0183	0.0020	mg/Kg wet	0.0200		91.7	70-130				
tert-Butyl Ethyl Ether (TBEE) Carbon Disulfide	0.0164	0.0010	mg/Kg wet	0.0200		82.1	70-130				
Carbon Disulfide Carbon Tetrachloride	0.165	0.0060	mg/Kg wet	0.200		82.6	70-130			V 05	
Chlorobenzene	0.0150	0.0020 0.0020	mg/Kg wet mg/Kg wet	0.0200		74.8	70-130			V-05	
Chlorodibromomethane	0.0204	0.0020	mg/Kg wet mg/Kg wet	0.0200 0.0200		102 79.7	70-130 70-130				
Chloroethane	0.0159 0.0155	0.0010	mg/Kg wet	0.0200		79.7	70-130				
Chloroform	0.0155	0.0040	mg/Kg wet	0.0200		83.8	70-130				
Chloromethane	0.0171	0.010	mg/Kg wet	0.0200		85.4	40-160				
2-Chlorotoluene	0.0171	0.0020	mg/Kg wet	0.0200		95.0	70-130				
4-Chlorotoluene	0.0190	0.0020	mg/Kg wet	0.0200		97.2	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	0.0194	0.0020	mg/Kg wet	0.0200		70.1	70-130			V-05	
1,2-Dibromoethane (EDB)	0.0140	0.0010	mg/Kg wet	0.0200		89.8	70-130				
Dibromomethane	0.0171	0.0020	mg/Kg wet	0.0200		85.4	70-130				
1,2-Dichlorobenzene	0.0192	0.0020	mg/Kg wet	0.0200		95.9	70-130				
1,3-Dichlorobenzene	0.0192	0.0020	mg/Kg wet	0.0200		96.1	70-130				
1,4-Dichlorobenzene	0.0192	0.0020	mg/Kg wet	0.0200		94.8	70-130				

Page 108 of 116

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

	T	Reporting	TT	Spike	Source	0/852	%REC	DDD	RPD	N T -	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B262682 - SW-846 5035											
LCS (B262682-BS1)]	Prepared & A	Analyzed: 07	/26/20					
Dichlorodifluoromethane (Freon 12)	0.0145	0.010	mg/Kg wet	0.0200		72.7	40-160				
1,1-Dichloroethane	0.0168	0.0020	mg/Kg wet	0.0200		84.1	70-130				
1,2-Dichloroethane	0.0169	0.0020	mg/Kg wet	0.0200		84.4	70-130				
1,1-Dichloroethylene	0.0159	0.0040	mg/Kg wet	0.0200		79.5	70-130				
cis-1,2-Dichloroethylene	0.0170	0.0020	mg/Kg wet	0.0200		85.0	70-130				
trans-1,2-Dichloroethylene	0.0170	0.0020	mg/Kg wet	0.0200		85.1	70-130				
1,2-Dichloropropane	0.0172	0.0020	mg/Kg wet	0.0200		85.8	70-130				
1,3-Dichloropropane	0.0180	0.0010	mg/Kg wet	0.0200		89.9	70-130				
2,2-Dichloropropane	0.0152	0.0020	mg/Kg wet	0.0200		76.0	70-130				
1,1-Dichloropropene	0.0170	0.0020	mg/Kg wet	0.0200		85.0	70-130				
cis-1,3-Dichloropropene	0.0168	0.0010	mg/Kg wet	0.0200		84.1	70-130				
trans-1,3-Dichloropropene	0.0170	0.0010	mg/Kg wet	0.0200		84.9	70-130				
Diethyl Ether	0.0177	0.010	mg/Kg wet	0.0200		88.5	70-130				
Diisopropyl Ether (DIPE)	0.0176	0.0010	mg/Kg wet	0.0200		88.0	70-130				
1,4-Dioxane	0.248	0.10	mg/Kg wet	0.200		124	40-160			V-16	
Ethylbenzene	0.0195	0.0020	mg/Kg wet	0.0200		97.3	70-130				
Hexachlorobutadiene	0.0196	0.0020	mg/Kg wet	0.0200		98.0	70-130				
2-Hexanone (MBK)	0.171	0.020	mg/Kg wet	0.200		85.6	40-160				
Isopropylbenzene (Cumene)	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
p-Isopropyltoluene (p-Cymene)	0.0183	0.0020	mg/Kg wet	0.0200		91.3	70-130				
Methyl tert-Butyl Ether (MTBE)	0.0171	0.0040	mg/Kg wet	0.0200		85.4	70-130				
Methylene Chloride	0.0173	0.010	mg/Kg wet	0.0200		86.3	70-130				
4-Methyl-2-pentanone (MIBK)	0.179	0.020	mg/Kg wet	0.200		89.4	40-160				
Naphthalene	0.0186	0.0040	mg/Kg wet	0.0200		93.1	70-130				
n-Propylbenzene	0.0192	0.0020	mg/Kg wet	0.0200		95.9	70-130				
Styrene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
1,1,2-Tetrachloroethane	0.0178	0.0020	mg/Kg wet	0.0200		89.1	70-130				
1,1,2,2-Tetrachloroethane	0.0187	0.0010	mg/Kg wet	0.0200		93.4	70-130				
Tetrachloroethylene	0.0198	0.0020	mg/Kg wet	0.0200		99.2	70-130				
Tetrahydrofuran	0.0198	0.010	mg/Kg wet	0.0200		92.1	70-130				
Toluene	0.0173	0.0020	mg/Kg wet	0.0200		86.6	70-130				
1,2,3-Trichlorobenzene	0.0194	0.0020	mg/Kg wet	0.0200		97.2	70-130				
1,2,4-Trichlorobenzene	0.0194	0.0020	mg/Kg wet	0.0200		98.1	70-130				
1,1,1-Trichloroethane	0.0156	0.0020	mg/Kg wet	0.0200		82.7	70-130				
1,1,2-Trichloroethane	0.0185	0.0020	mg/Kg wet	0.0200		90.4	70-130				
Trichloroethylene	0.0178	0.0020	mg/Kg wet	0.0200		89.0	70-130				
Trichlorofluoromethane (Freon 11)	0.0178	0.010	mg/Kg wet	0.0200		78.7	70-130				
1,2,3-Trichloropropane	0.0188	0.0020	mg/Kg wet	0.0200		94.1	70-130				
1,2,4-Trimethylbenzene	0.0188	0.0020	mg/Kg wet	0.0200		87.9	70-130				
1,3,5-Trimethylbenzene	0.0178	0.0020	mg/Kg wet	0.0200		99.1	70-130				
Vinyl Chloride		0.010	mg/Kg wet	0.0200		80.3	70-130				
m+p Xylene	0.0161	0.0040	mg/Kg wet	0.0200		80.3 97.7	70-130				
o-Xylene	0.0391 0.0195	0.0040	mg/Kg wet	0.0400		97.7 97.6	70-130				
Surrogate: 1,2-Dichloroethane-d4	0.0445		mg/Kg wet	0.0500		89.0	70-130				
Surrogate: Toluene-d8	0.0474		mg/Kg wet	0.0500		94.9	70-130				
Surrogate: 4-Bromofluorobenzene	0.0504		mg/Kg wet	0.0500		101	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting	·	Spike	Source	a=	%REC	_	RPD	. -	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B262682 - SW-846 5035											
LCS Dup (B262682-BSD1)]	Prepared & A	Analyzed: 07	/26/20					
Acetone	0.169	0.10	mg/Kg wet	0.200		84.4	40-160	9.41	20		Ť
tert-Amyl Methyl Ether (TAME)	0.0175	0.0010	mg/Kg wet	0.0200		87.7	70-130	4.46	20		
Benzene	0.0181	0.0020	mg/Kg wet	0.0200		90.4	70-130	3.53	20		
Bromobenzene	0.0196	0.0020	mg/Kg wet	0.0200		98.2	70-130	4.54	20		
Bromochloromethane	0.0185	0.0020	mg/Kg wet	0.0200		92.5	70-130	1.92	20		
Bromodichloromethane	0.0172	0.0020	mg/Kg wet	0.0200		86.0	70-130	9.24	20		
Bromoform	0.0173	0.0020	mg/Kg wet	0.0200		86.4	70-130	11.8	20		
Bromomethane	0.0160	0.010	mg/Kg wet	0.0200		80.2	40-160	0.150	20	V-34	t
2-Butanone (MEK)	0.191	0.040	mg/Kg wet	0.200		95.3	40-160	7.55	20		Ť
n-Butylbenzene	0.0181	0.0020	mg/Kg wet	0.0200		90.5	70-130	7.04	20		
sec-Butylbenzene	0.0185	0.0020	mg/Kg wet	0.0200		92.4	70-130	4.64	20		
tert-Butylbenzene	0.0194	0.0020	mg/Kg wet	0.0200		97.2	70-130	5.73	20		
tert-Butyl Ethyl Ether (TBEE)	0.0170	0.0010	mg/Kg wet	0.0200		85.1	70-130	3.54	20		
Carbon Disulfide	0.171	0.0060	mg/Kg wet	0.200		85.3	70-130	3.26	20		
Carbon Tetrachloride	0.0154	0.0020	mg/Kg wet	0.0200		76.8	70-130	2.64	20	V-05	
Chlorobenzene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	5.67	20		
Chlorodibromomethane	0.0174	0.0010	mg/Kg wet	0.0200		86.9	70-130	8.58	20		
Chloroethane	0.0166	0.010	mg/Kg wet	0.0200		82.8	70-130	6.59	20		
Chloroform	0.0173	0.0040	mg/Kg wet	0.0200		86.6	70-130	3.29	20		
Chloromethane	0.0190	0.010	mg/Kg wet	0.0200		94.8	40-160	10.4	20		Ť
2-Chlorotoluene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	6.20	20		
4-Chlorotoluene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	5.01	20		
1,2-Dibromo-3-chloropropane (DBCP)	0.0160	0.0020	mg/Kg wet	0.0200		80.0	70-130	13.2	20	V-05	
1,2-Dibromoethane (EDB)	0.0198	0.0010	mg/Kg wet	0.0200		99.2	70-130	9.93	20		
Dibromomethane	0.0180	0.0020	mg/Kg wet	0.0200		89.9	70-130	5.15	20		
1,2-Dichlorobenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	5.20	20		
1,3-Dichlorobenzene	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130	4.18	20		
1,4-Dichlorobenzene	0.0200	0.0020	mg/Kg wet	0.0200		99.8	70-130	5.13	20		
Dichlorodifluoromethane (Freon 12)	0.0155	0.010	mg/Kg wet	0.0200		77.3	40-160	6.12	20		t
1,1-Dichloroethane	0.0173	0.0020	mg/Kg wet	0.0200		86.7	70-130	3.02	20		
1,2-Dichloroethane	0.0181	0.0020	mg/Kg wet	0.0200		90.3	70-130	6.74	20		
1,1-Dichloroethylene	0.0163	0.0040	mg/Kg wet	0.0200		81.4	70-130	2.42	20		
cis-1,2-Dichloroethylene	0.0172	0.0020	mg/Kg wet	0.0200		86.1	70-130	1.38	20		
trans-1,2-Dichloroethylene	0.0172	0.0020	mg/Kg wet	0.0200		85.3	70-130	0.188	20		
1,2-Dichloropropane	0.0184	0.0020	mg/Kg wet	0.0200		92.0	70-130	6.96	20		
1,3-Dichloropropane	0.0191	0.0010	mg/Kg wet	0.0200		95.3	70-130	5.84	20		
2,2-Dichloropropane	0.0154	0.0020	mg/Kg wet	0.0200		77.2	70-130	1.58	20		
1,1-Dichloropropene	0.0178	0.0020	mg/Kg wet	0.0200		89.0	70-130	4.63	20		
cis-1,3-Dichloropropene	0.0178	0.0010	mg/Kg wet	0.0200		89.4	70-130	6.14	20		
trans-1,3-Dichloropropene	0.0179	0.0010	mg/Kg wet	0.0200		88.4	70-130	4.08	20		
Diethyl Ether	0.0177	0.010	mg/Kg wet	0.0200		92.2	70-130	4.03	20		
Disopropyl Ether (DIPE)	0.0184	0.0010	mg/Kg wet	0.0200		91.1	70-130	3.42	20		
1.4-Dioxane	0.253	0.10	mg/Kg wet	0.0200		126	40-160	1.74	20 20	V-16	Ť
Ethylbenzene	0.233	0.0020	mg/Kg wet	0.0200		101	70-130	3.86	20	-10	1
Hexachlorobutadiene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	6.88	20		
2-Hexanone (MBK)	0.0210	0.020	mg/Kg wet	0.0200		96.0	40-160	11.4	20 20		Ť
Isopropylbenzene (Cumene)	0.192	0.0020	mg/Kg wet	0.200		90.0 105	40-180 70-130	4.35	20 20		I
p-Isopropyltoluene (p-Cymene)		0.0020	mg/Kg wet	0.0200		97.3	70-130	4.33 6.41	20 20		
Methyl tert-Butyl Ether (MTBE)	0.0195	0.0020	mg/Kg wet	0.0200		97.3 89.6	70-130				
Methylene Chloride	0.0179	0.0040	mg/Kg wet					4.72	20 20		
4-Methyl-2-pentanone (MIBK)	0.0177	0.010	mg/Kg wet	0.0200		88.6	70-130	2.59	20 20		*
	0.197			0.200		98.5	40-160	9.69	20 20		Ť
Naphthalene	0.0201	0.0040	mg/Kg wet	0.0200		101	70-130	7.70	20		

Page 110 of 116

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B262682 - SW-846 5035										
LCS Dup (B262682-BSD1)	Analyzed: 07	/26/20								
n-Propylbenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	5.20	20	
Styrene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130	3.20	20	
1,1,1,2-Tetrachloroethane	0.0186	0.0020	mg/Kg wet	0.0200		92.9	70-130	4.14	20	
1,1,2,2-Tetrachloroethane	0.0205	0.0010	mg/Kg wet	0.0200		102	70-130	9.13	20	
Tetrachloroethylene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130	5.12	20	
Tetrahydrofuran	0.0206	0.010	mg/Kg wet	0.0200		103	70-130	11.4	20	
Toluene	0.0185	0.0020	mg/Kg wet	0.0200		92.4	70-130	6.45	20	
1,2,3-Trichlorobenzene	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130	8.56	20	
1,2,4-Trichlorobenzene	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130	7.61	20	
1,1,1-Trichloroethane	0.0174	0.0020	mg/Kg wet	0.0200		87.1	70-130	5.18	20	
,1,2-Trichloroethane	0.0195	0.0020	mg/Kg wet	0.0200		97.6	70-130	7.60	20	
Trichloroethylene	0.0187	0.0020	mg/Kg wet	0.0200		93.6	70-130	5.02	20	
Trichlorofluoromethane (Freon 11)	0.0158	0.010	mg/Kg wet	0.0200		78.8	70-130	0.0508	20	
1,2,3-Trichloropropane	0.0220	0.0020	mg/Kg wet	0.0200		110	70-130	15.6	20	
1,2,4-Trimethylbenzene	0.0186	0.0020	mg/Kg wet	0.0200		93.3	70-130	5.94	20	
1,3,5-Trimethylbenzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	5.04	20	
Vinyl Chloride	0.0170	0.010	mg/Kg wet	0.0200		85.0	70-130	5.72	20	
n+p Xylene	0.0405	0.0040	mg/Kg wet	0.0400		101	70-130	3.54	20	
p-Xylene	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130	2.48	20	
Surrogate: 1,2-Dichloroethane-d4	0.0437		mg/Kg wet	0.0500		87.4	70-130			
Surrogate: Toluene-d8	0.0481		mg/Kg wet	0.0500		96.2	70-130			
Surrogate: 4-Bromofluorobenzene	0.0517		mg/Kg wet	0.0500		103	70-130			

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
- ND Not Detected
- RL Reporting Limit is at the level of quantitation (LOQ)
- DL Detection Limit is the lower limit of detection determined by the MDL study
- MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
- V-16 Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
- V-34 Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
V-846 8260C-D in Soil		
Acetone	CT,NH,NY,ME	
Benzene	CT,NH,NY,ME	
Bromobenzene	NH,NY,ME	
Bromochloromethane	NH,NY,ME	
Bromodichloromethane	CT,NH,NY,ME	
Bromoform	CT,NH,NY,ME	
Bromomethane	CT,NH,NY,ME	
2-Butanone (MEK)	CT,NH,NY,ME	
n-Butylbenzene	CT,NH,NY,ME	
sec-Butylbenzene	CT,NH,NY,ME	
tert-Butylbenzene	CT,NH,NY,ME	
Carbon Disulfide	CT,NH,NY,ME	
Carbon Tetrachloride	CT,NH,NY,ME	
Chlorobenzene	CT,NH,NY,ME	
Chlorodibromomethane	CT,NH,NY,ME	
Chloroethane	CT,NH,NY,ME	
Chloroform	CT,NH,NY,ME	
Chloromethane	CT,NH,NY,ME	
2-Chlorotoluene	CT,NH,NY,ME	
4-Chlorotoluene	CT,NH,NY,ME	
1,2-Dibromo-3-chloropropane (DBCP)	NY	
1,2-Dibromoethane (EDB)	NY	
Dibromomethane	NH,NY,ME	
1,2-Dichlorobenzene	CT,NH,NY,ME	
1,3-Dichlorobenzene	CT,NH,NY,ME	
1,4-Dichlorobenzene	CT,NH,NY,ME	
Dichlorodifluoromethane (Freon 12)	NY,ME	
1,1-Dichloroethane	CT,NH,NY,ME	
1,2-Dichloroethane	CT,NH,NY,ME	
1,1-Dichloroethylene	CT,NH,NY,ME	
cis-1,2-Dichloroethylene	CT,NH,NY,ME	
trans-1,2-Dichloroethylene	CT,NH,NY,ME	
1,2-Dichloropropane	CT,NH,NY,ME	
1,3-Dichloropropane	NH,NY,ME	
2,2-Dichloropropane	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME	
trans-1,3-Dichloropropene	CT,NH,NY,ME	
1,4-Dioxane	NY	
Ethylbenzene	CT,NH,NY,ME	
Hexachlorobutadiene	NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
p-Isopropyltoluene (p-Cymene)	NH,NY	
Methyl tert-Butyl Ether (MTBE)	NH,NY	
Methylene Chloride	CT,NH,NY,ME	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	

CERTIFICATIONS

Certified Analyses included in this Report

oor and a rinary sets included in this rieport		
Analyte	Certifications	
SW-846 8260C-D in Soil		
Naphthalene	NH,NY,ME	
n-Propylbenzene	NH,NY	
Styrene	CT,NH,NY,ME	
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	
Toluene	CT,NH,NY,ME	
1,2,3-Trichlorobenzene	NY	
1,2,4-Trichlorobenzene	NH,NY,ME	
1,1,1-Trichloroethane	CT,NH,NY,ME	
1,1,2-Trichloroethane	CT,NH,NY,ME	
Trichloroethylene	CT,NH,NY,ME	
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME	
1,2,3-Trichloropropane	NH,NY,ME	
1,2,4-Trimethylbenzene	CT,NH,NY,ME	
1,3,5-Trimethylbenzene	CT,NH,NY,ME	
Vinyl Chloride	CT,NH,NY,ME	
m+p Xylene	CT,NH,NY,ME	
o-Xylene	CT,NH,NY,ME	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations :

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
СТ	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021

29589				al Methods					SAMPLE INFO	op	to do												of Conte
120	ition	info PO #:	irements	CT RCP Analytical Methods	· morganics) argets)	•					\square	/ Sample Comments			· · · ·				eiaht per				All samples submitted are subject to Apha's Terms and Conditions.
ALPHA Job #:	Billing Information	Client info	Project Information Requirements	D Yes D No (is & EPH with Ta	Critorio			07	Silus	12-51								as wet weight	20			
V 02				thods on this SDC2 /D	Required for Meta			۲۴ ۱۹۹۵ کارل	lingerprin	JUS CUIN DE	1443 VI429								8260, report	7/27			H 20, 1135
<u>ل</u>	tion - Data Dell	d email	uirements &	ICP Analytical Me Soite Remired	Standards (Info F	ES RGP Program	4 - 54	Aluo 5060	BCEA8	UBES & 1 State									Only run 8	Mary D - N			Beived By
Date Rec'd in Lab:	Report Information - Data Deliverables	o adëx	Regulatory Requirements	C Yes C No MA MCP Analytical Methods C Yes C No Matrix Solve Berninged on this SDC2 (Domined for MCD Incontinued for	□ Tes □ No GW1 Standards (Info Required for Metals & EPH with Targets)	<pre>D Yes D No NPDES RGP O Other State /Fed Program</pre>		~		THO WO			,				~						A MULTON
OF D		tegning[STOW, MA	~		and a second		(iponcudde-aud ,			sample Initial	LI LI LI			EMS	EMS	RISI).		_	Container Type	Preservative	Date/Time I'H 120
Y PAGE	uo		14RLESTA	5FM-20071	U			RUSH (anty continued it			e	1925		1245	1332	i425	1350						14
CHAIN OF CUSTODY	Project Information	Project Name: JF MORAN	Project Location: CHARLE	Project #: D4- S	Project Manager: F.A. (ALPHA Quote #:	Turn-Around Time		Date Due:		Collection Date T	21,212	-				\rightarrow						Relinquished By:
IN OF C			Proj			{ 0]		Sample ID		6	01			7						23
CHA	320 Forbes Blvd	Mansfield, MA 02048 Tel: 508-822-9300		FSUCIATI	FURD ST	MA 0254	- 600 -	eleassoci	ct Informati		Sam	JEM 1- 3	5FM 4-(JFM R-	STIN 7	I WI	TFM 12				Preservative A≕ None		F = NaOH F = MaOH G = NaHSOA H = Na ₅ S ₂ O3 I = AScorbic Acid J = NH(CI
AHAID	8 Wakup Orive	westboro, MA_01581 Tel: 508-898-9220	Client Information	Client STEELE ASOUNTES	Address. 94 61 FFARD ST	FALMOUTH M	Phone: 508 540 - 000	Email: eric@steeleassocietes	Additional Project Information:		ALPHA Lab ID (Lab Use Only)	2956901 31	N 3	B 7	5 20	2	17				Container Type Pr P= Plastic		Cartowerd cup Cartowerd Cartower Cartower Cartower Cartower Da Bottle Da Bottle Da Bottle Cartower Da Bottle Da Bottle Cartower C

l Have Not	Confirm	ed Sample Cont	ainer			CO	n-	tes	, C®
Numbers With	n Lab Sta	iff Before Reling	uishing	WHH-		ANALYT	ICAL L	ABORATO	DRY
					8 *	Dec# 277	Rev 5 2017	,	
									1994 - 1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -
Login Sam	ple Rece	ipt Checklist - (I	Rejection (Criteria Listi	ng - Usini Cliant	g Acceptance State True	e Folicy/ A	, y + 2.00	
	Stateme	nt will be broug	ht to the at	itention of tr	he Chent	· State Huev			
Client S	jeek	ARSOLICTE	>				Time	1545	
Received E	By _	PAP		Date	7-10	<u>v</u>	IIIIE		
How were the sa	amples	In Cooler	1	No Cooler_		On Ice	(No Ice	
received?		- lirect from Sampl	ina	-		Ambient		Melted Ice	······································
		Meet nom oump	By Gun #			Actual Temp	- (2.0		
Were samples		T	•			- Actual Temp			
Temperature?	2-6°C		By Blank #		o Somolo	s Tampered v		M	
		al Intact?	<u>NA</u>			ree With Sam			
Was CC	C Reling	uished?		-		lice with our	191001		
		aking/loose caps	on any san			_ ived within ho	Idina time?	T	
Is COC in ink/ L	.egible?		· -- -	Analysis		Sample	r Name		
Did COC inclu		Client		_ Analysis _		Collection	Dates/Times	3	
pertinent Inforn	nation?	Project		- 100 -					
Are Sample lab	els filled	out and legible?			Who wa	as notified?			
Are there Lab to			<u> </u>	_		as notified?			-
Are there Rushe			<u> </u>			as notified?			
Are there Short			<u> </u>	_	1110 11				
Is there enough	Volume	Kblo2	<u> </u>		MS/MSD	?		C	
Is there Headsp	bace wher	re applicable	<u> </u>			samples req	uired?	<u> </u>	
Proper Media/C	ontainers			<u>.</u>	On COC	? == {F			
Were trip blank	s received	d?	NA	– Acid		····	Base		_
Do all samples						#			#
Vials	#	Containers:	#	4 Liter	Plastic		16 c	oz Amb.	
Unp-		1 Liter Amb.	<u></u>		Plastic			mb/Clear	3
HCL-		500 mL Amb.	<u> </u>	1	Plastic			mb/Clear	
Meoh-	6	250 mL Amb. Flashpoint	<u> </u>		acteria		20x A	mb/Clear	3
Bisulfate-		Other Glass		and the second se	Plastic		E	ncore	
	11	SOC Kit	<u> </u>		ic Bag		Frozen	n 1815	****
Thiosulfate- Sulfuric-		Perchlorate		and the second	lock		1712	<u>v 1013</u>	
Sullunc-				Unused	Media		1		
		2 Johnson	#	Gildsed	incond.	#			#
Vials	#	Containers: 1 Liter Amb.	<u> </u>	1 Liter	Plastic			oz Amb.	<u> </u>
Unp-		500 mL Amb.	+		L Plastic			mb/Clear	
HCL-	·	250 mL Amb.	+	t	L Plastic			Amb/Clear	
Meoh-		Col./Bacteria	1		hpoint			\mb/Clear	
Bisulfate-		Other Plastic	1	Othe	r Glass			ncore	
Thiosulfate-		SOC Kit			tic Bag		Frozen:		
Sulfuric-	<u></u>	Perchlorate		Zip	olock				
Comments:									